JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 90-98.doi: 10.6040/j.issn.1671-9352.0.2015.154

Previous Articles     Next Articles

New H 1-Galerkin mixed finite element analysis for quasi-linear viscoelasticity equation

DIAO Qun1, SHI Dong-yang2   

  1. 1. School of Mathematics and Information Science, Pingdingshan University, Pingdingshan 467000, Henan, China;
    2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2015-04-14 Online:2016-04-20 Published:2016-04-08

Abstract: A new H 1-Galerkin mixed finite element pattern for quasi-linear viscoelasticity equation is constructed using incomplete biquadratic element Q-2 and first order BDFM element. Through Bramble-Hilbert lemma, a newhigh precision results of interpolation operators corresponding to unit are proved. Further, the superclose properties for the primitive variables u in H 1-norm and the intermediate variable (→overp) in H(div)-norm are obtained respectively in semi-discrete and fully discrete schemes.

Key words: quasi-linear viscoelasticity equation, H 1-Galerkin mixed finite element method, superclose, semi-discrete and fully discrete schemes, Bramble-Hilbert lemma

CLC Number: 

  • O242.21
[1] LIN Qun, ZHANG Shuhua. A direct global superconvergence analysis for Sobolev and viscoelasticity type equations[J]. Appl Math, 1997, 42(1):23-34.
[2] JIN Dayong, LIU Tang, ZHANG Shuhua. Global superconvergence analysis of Wilson element for Sobolev and viscoelasticity type equations[J]. J Syst Sci Complex, 2004, 17(4):452-463.
[3] SHI Dongyang, PENG Yucheng, CHEN Shaochun. Superconvergence of a nonconforming finite element approximation to viscoelasticity type equations on anisotropic meshes[J]. Numerical Mathematics: A Journal of Chinese Universities(English Series), 2006, 15(4):375-384.
[4] 石东洋, 关宏波. 粘弹性方程的非协调变网格有限元方法[J]. 高校应用数学学报, 2008, 23(4):452-458. SHI Dongyang, GUAN Hongbo. A class of nonconforming finite element methods for viscoelasticity type equations with moving grid[J]. Appl Math J Chin Univ, 2008, 23(4):452-458.
[5] 李宏, 孙萍, 尚月强,等. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(4):413-424. LI Hong, SUN Ping, SHANG Yueqiang, et al. A fully discrete finite volume element formulation and numerical simulations for viscoelastic equations[J]. Math Numer Sin, 2012, 34(4):413-424.
[6] 李先崇, 孙萍, 安静,等.粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1):49-58. LI Xianchong, SUN Ping, AN Jing, et al. A new splitting positive definite mixed finite element method for viscoelastic equation[J]. Math Numer Sin, 2013, 35(1):49-58.
[7] 彭玉成, 华沛. 粘弹性方程的一个二阶非协调有限元逼近分析[J]. 高等学校计算数学学报, 2013, 35(3):240-249. PENG Yucheng, HUA Pei. Analysis of a second order nonconforming finite element approximation to viscoelasticity type equations[J]. Numer Math J Chin Univ, 2013, 35(3):240-249.
[8] SHI Dongyang, ZHANG Buying. High accuracy analysis of the finite element method for nonlinear viscoelastic wave equations with nonlinear boundary conditions[J]. J Syst Sci Complex, 2011, 24(4):795-802.
[9] WANG Fengling, ZHAO Yanmin, SHI Dongyang. EQrot1 nonforming finite element analysis for nonlinear viscoelasticity equations[J]. Math Appl, 2013, 26(1):1-10.
[10] Pani A K. An H 1-Galerkin mixed finite element methods for parabolic partial differential equations[J]. SIAM J Numer Anal, 1998, 35(2):721-727.
[11] 郭玲, 陈焕贞. Sobolev方程的H 1-Galerkin混合有限元方法[J]. 系统科学与数学, 2006, 26(3):301-314. GUO Ling, CHEN Huanzhen. H 1-Galerkin mixed finite element method for the Sobolev equation[J]. J Sys Sci & Math Scis, 2006, 26(3):301-314.
[12] 王瑞文. 双曲型积分微分方程H 1-Galerkin混合元法的误差估计[J]. 计算数学, 2006, 28(1):19-30. WANG Ruiwen. Error estimates for H 1-Galerkin mixed finite element methods for hyperbolic type integro-differential equation[J]. Math Numer Sin, 2006, 28(1):19-30.
[13] 刘洋, 李宏, 何斯日古楞. 伪双曲型积分-微分方程H 1-Galerkin混合元法误差估计[J]. 高等学校计算数学学报, 2010, 32(1):1-20. LIU Yang, LI Hong, HE Siriguleng. Error estimates of H 1-Galerkin mixed finite element methods for pseudo-hyperbolic partial integro-differential equation[J]. Numer Math J Chin Univ, 2010, 32(1):1-20.
[14] 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的H 1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3):317-328. SHI Dongyang, TANG Qili, DONG Xiaojing. Superconvergence analysis of H 1-Galerkin mixed finite element method for strongly damped wave equations[J]. Math Numer Sin, 2012, 34(3):317-328.
[15] SHI Dongyang, LIAO Xin, TANG Qili. Highly efficient H1-Galerkin mixed finite element method(MFEM)for parabolic integro-differential equation[J]. Appl Math Mech, 2014, 35(7):897-912.
[16] 石东洋, 史艳华, 王芬玲. 四阶拋物方程H 1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4):363-380. SHI Dongyang, SHI Yanhua, WANG Fenling. Supercloseness and the optimal order error estimates of H 1-Galerkin mixed finite element method for forth-order parabolic equation[J]. Math Numer Sin, 2014, 36(4):363-380.
[17] 陈红斌, 刘晓奇, 徐大. 粘弹性双曲型方程的H 1-Galerkin混合有限元方法[J]. 高等学校计算数学学报, 2011, 33(3):279-288. CHEN Hongbin, LIU Xiaoqi, XU Da. H 1-Galerkin mixed finite element method for the viscoelasticity wave equation[J]. Numer Math J Chin Univ, 2011, 33(3):279-288.
[18] WANG Jinfeng, LIU Yang, LI Hong. Error estimates of H 1-Galerkin mixed methods for the viscoelasticity wave equation[J]. Chin Quart J of Math, 2011, 26(1):131-137.
[19] 郝晓斌. 非协调有限元的构造及其应用[D]. 郑州:郑州大学, 2008. HAO Xiaobin. Construction and application of nonconforming finite element[D]. Zhengzhou: Zhengzhou University, 2008.
[20] 林群, 严宁宁. 高效有限元构造与分析[M]. 保定: 河北大学出版社, 1996. LIN Qun, YAN Ningning. Construction and analysis for effecitive finite element methods[M]. Baoding: Hebei University Press, 1996.
[21] Hale J K. Ordinary differential equations[M]. New York: Willey, 1969.
[1] ZHANG Hou-chao, ZHU Wei-jun, WANG Jun-jun. Superconvergence and extrapolation of a lower order mixed finite method for nonlinear fourth-order hyperbolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 35-46.
[2] FAN Ming-zhi, WANG Fen-ling, SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 78-89.
[3] ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28-35.
[4] MENG Xiao-ran1, SHI Dong-wei2. Analysis of the anisotropic R-T element for quasi-linear  parabolic problems on anisotropic meshes [J]. J4, 2012, 47(2): 36-41.
[5] WANG Fen-ling1, SHI Dong-wei2. High analysis of Hermite-type rectangular element for nonlinear hyperbolic equation [J]. J4, 2012, 47(10): 89-96.
[6] QIAO Bao-min, LIANG Hong-liang. Super-convergence analysis of Adini′s finite element for a kind of nonlinear generalized nerve conductive equations [J]. J4, 2011, 46(8): 42-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!