JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (2): 89-93.doi: 10.6040/j.issn.1671-9352.0.2015.235

Previous Articles     Next Articles

Gorenstein injective modules over upper triangular matrix Artin algebras

WANG Chao   

  1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2015-05-14 Online:2016-02-16 Published:2016-03-11

Abstract: Let Λ=(A M0 B)be an Artin algebra. The definition of the cocompatible bimodule is introduced, and the category Ginj(Λ)of the finitely generated Gorenstein injective Λ-modules under the condition that M is a cocompatible (A,B)-bimodule are described.

Key words: Gorenstein injective module, cocompatible bimodule, triangular matrix Artin algebra

CLC Number: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[2] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. J Algebra, 2013, 388:65-80.
[3] ANDERSON F W, FULLER K R. Rings and categories of modules[M]. New York: Springer-Verlag, 1992.
[4] AUSLANDER M, REITEN I, SMAL S O. Representation theory of artin algebras[M]. Cambridge: Cambridge Univ Press, 1995.
[5] BELIGIANNIS A. On algebras of finite Cohen-Macaulay type[J]. Adv Math, 2011, 226:1973-2019.
[6] HAPPEL D. Triangulated categories in representation theory of finite dimensional algebras[M]. Gambridge: Cambridge Univ Press, 1988.
[7] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[8] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[9] YANG Xiaoyan, LIU Zhongkui. Strongly Gorenstein projective, injective and flat modules[J]. J Algebra, 2008, 320:2659-2674.
[1] WANG Xin-xin. Strongly Ω-Gorenstein injective modules [J]. J4, 2013, 48(2): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!