JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 118-126.doi: 10.6040/j.issn.1671-9352.0.2015.275

Previous Articles     Next Articles

The filters based on relative negations in FI Algebras

WU Su-peng1,2, ZHAO Bin1*   

  1. 1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China;
    2. Department of Mathematics and Statistics, Ankang University, Ankang 725000, Shaanxi, China
  • Received:2015-06-08 Online:2016-04-20 Published:2016-04-08

Abstract: The notion of relative negations in FI-algebras is proposed and some properties of it are discussed. Based on the relative negations, relative regular filters, extended relative regular filters and weak relative regular filters are defined, Some characteristic theorems of them are obtained. Algebraic properties of the set of relative double complemented elements based on the filters are introduced and the applications of extended relative regular filters are showd.

Key words: relative regular filter, weak relative regular filter, FI-algebra, extended relative regular filter

CLC Number: 

  • O141.1
[1] HAJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 2000.
[2] WANG Guojun, ZHOU Hongjun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press and Alpha Science International Limited, 2009.
[3] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993, 89(1):20-27. XU Yang. Lattice implication algebras[J]. Journal of Southwest Jiaotong University 1993, 89(1):20-27.
[4] 吴望名. Fuzzy蕴涵代数[J]. 模糊系统与数学, 1990, 4(1):56-64. WU Wangming. Fuzzy implication algebras[J]. Fuzzy Systems and Mathematics, 1990, 4(1):56-64.
[5] RUDEANU S. On the Glivenko-Frink theorem for Hilbert algebras[J]. Annals of the University of Craiova, Mathematics and Computer Series, 2007, 34:72-77.
[6] ZHOU Hongjun, ZHAO Bin. Generalized Bosbach and Riecan states based on relative negations in residuated lattices[J]. Fuzzy Sets and Systems, 2012, 187:33-57.
[7] TURUNEN E. Boolean deductive systems of BL-algebras[J]. Arch Math, 2001, 40:467-473
[8] HAVESHKI M, BORUMAND S A, ESLAMI E. Some types of filters in BL-algebras[J]. Soft Computing, 2006, 10(8):657-664.
[9] KONDO M, DUDEK W A. Filter theory of BL-algebras[J]. Soft Computing, 2008, 12(5):419-423.
[10] BORUMAND S A, MOTAMED S. Some results in BL-algebras[J]. Mathematical Logic Quarterly 2009, 55(6):649-658.
[11] BORZOOEI R A, KHOSRAVI SHOAR S, AMERI R. Some types of filters in MTL-algebras[J]. Fuzzy Sets and Systems, 2012, 187:92-102.
[12] FARAHANI H, ZAHIRI O. Algebraic view of MTL-filters[J]. Annals of the University of Craiova, Mathematics and Computer Series, 2013, 40(1):34-44.
[13] ZHU Yiquan, XU Yang. On filter theory of residuated lattices[J]. Information Sciences, 2010, 180:3614-3632.
[14] MA Zhenming, HU Baoqing. Characterizations and new subclasses of I-filters in residuated lattices[J]. Fuzzy Sets and Systems, 2014, 247:92-107.
[15] CIGNOLI R, TORRENS A. Glivenko like theorems in natural expansions of BCK-logic[J]. Mathematical Logic Quarterly, 2004, 50(2):111-125.
[16] 邹庭荣. PFI代数及其P滤子[J]. 数学杂志, 2000, 20(3):323-328. ZOU Tingrong. PFI-algebras and its P-filters[J]. Journal of Mathematics, 2000, 20(3):323-328.
[17] 邹庭荣, 肖云萍. FI代数的滤子[J]. 模糊系统与数学, 2003, 17(3):80-85. ZOU Tingrong, Xiao Yunping. Filters of fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2003, 17(3):80-85.
[18] 刘春辉. Fuzzy蕴涵代数的正则滤子[J]. 计算机工程与应用, 2014, 50(20):41-44. LIU Chunhui. Regular filters in FI-Algebras[J]. Computer Engineering and Applications, 2014, 50(20):41-44.
[19] 王国俊. MV-代数、BL-代数、R0-代数与多值逻辑[J]. 模糊系统与数学, 2002, 16(2):1-15. WANG Guojun. MV-Algebras、BL-Algebras、R0-Algebras and Multiple-Valued Logic[J]. Fuzzy Systems and Mathematics, 2002, 16(2):1-15.
[20] 吴洪博, 汪宁. 基于正则FI-代数的MT理想及其应用[J]. 电子学报, 2013, 41(7):1389-1394. WU Hongbo, WANG Ning. MT Ideals of regular FI-algebras with their applications[J]. Acta Electronica Sinica, 2013, 41(7):1389-1394.
[21] PEI Daowu. A survey of fuzzy implication algebras and their axiomatization[J]. International Journal of Approximate Reasoning, 2014, 55(8):1643-1658.
[22] LUO Qingjun. Notes on “A survey of fuzzy implication algebras and their axiomatization”[J]. International Journal of Approximate Reasoning, 2015, 57:64-68.
[23] 刘春辉, 徐罗山. Fuzzy蕴涵代数的MP滤子[J]. 模糊系统与数学, 2009, 23(2):1-6. LIU Chunhui, XU Luoshan. MP filters of fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2009, 23(1):1-6.
[24] 刘春辉. Fuzzy蕴涵代数的关联MP滤子和交换MP滤子[J]. 模糊系统与数学, 2012, 26(6):31-37. LIU Chunhui. Implicative and commutative MP filters in fuzzy implicational algebras[J]. Fuzzy Systems and Mathematics, 2010, 26(6):31-37.
[25] 刘春辉, 徐罗山. Fuzzy蕴涵代数的滤子理论[J]. 山东大学学报(理学版), 2013, 48(9):73-77. LIU Chunhui, XU Luoshan. Theory of filters in fuzzy implicational algebras[J]. Journal of Shandong University(Natural Science), 2013, 48(9):73-77.
[26] ZHOU Hongjun, ZHAO Bin. Stone-like representation theorems and three-valued filters in R0-algebras(nilpotent minimum algebras)[J].Fuzzy Sets and Systems, 2011, 162:1-26.
[27] MURESAN C. Dense elements and classes of residuated lattices[J]. Bull Math Soc Sci Math Roumanie, 2010, 53(1):11-24.
[1] LIU Chun-hui1,2. Filteristic soft FI-algebras [J]. J4, 2012, 47(11): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!