JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (10): 48-53.doi: 10.6040/j.issn.1671-9352.0.2015.309
Previous Articles Next Articles
ZHANG Shen-gui
CLC Number:
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5:105-116. [2] RUZICKA M. Electrorheologial fluids: modeling and mathematial throry[M]. Berlin: Springer-Verlag, 2000. [3] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66, 4:1383-1406. [4] LIN Lin, TANG Chunlei. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations[J]. Acta Mathematica Scientia, 2013, 33(1):155-170. [5] YIN Honghui, YANG Zuodong. Three solutions for a navier boundary value system involving the(p(x), q(x))-biharmonic operator[J]. British Journal of Mathematics Computer Science, 2013, 3(3):281-290. [6] YIN, Honghui, LIU Ying. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharnonic operator[J]. Bull. Korean Math Soc, 2013, 50(6):1817-1826. [7] AFROUZI G A, MIRZAPOUR M, RADULESCU V D. Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions[J]. Collectanea Mathematica, 2015, 5:1-17. [8] KONG Lingju. Eigenvalues for a fourth order elliptic problem[J]. Proceedings of the American Mathematical Society, 2015, 143(1):249-258. [9] 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. 山东大学学报(理学版), 2012, 47(10):116-120. ZHANG Shengui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation[J]. Journal of Shandong University(Natural Science), 2012, 47(10):116-120. [10] AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents[J]. Electron J Differential Equations, 2009, 153:1-13. [11] WILLEM M. Minimax theorems[M]. Boston: Birkhauser, 1996. [12] DING Yanheng, LUAN Shixia. Multiple solutions for a class of nonlinear Schr(¨overo)dinger equations[J]. J Differential Equations, 2004, 207:423-457. |
|