JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (10): 48-53.doi: 10.6040/j.issn.1671-9352.0.2015.309

Previous Articles     Next Articles

Multiplicity of solutions for Kirchhoff type equation involving the p(x)-biharnonic operator

ZHANG Shen-gui   

  1. College of Mathematics and Computer Science, Northwest University for Nationalities, Lanzhou 730030, Gansu, China
  • Received:2015-06-29 Online:2016-10-20 Published:2016-10-17

Abstract: A class of Kirchhoff type equation involving the p(x)-biharnonic operator is ivestigated. By using fountain theorem in critical point theory, some sufficient conditions for the existence of multiplicity of solutions are obtained, which generalize and improve some existing resuls.

Key words: p(x)-biharnonic operator, Navier boundary value problem, Kirchhoff type equation, critical point

CLC Number: 

  • O175.8
[1] ZHIKOV V. On some variational problems[J]. Russian J Math Phys, 1997, 5:105-116.
[2] RUZICKA M. Electrorheologial fluids: modeling and mathematial throry[M]. Berlin: Springer-Verlag, 2000.
[3] CHEN Y, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM J Appl Math, 2006, 66, 4:1383-1406.
[4] LIN Lin, TANG Chunlei. Existence and multiplicity of solutions for a class of p(x)-biharmonic equations[J]. Acta Mathematica Scientia, 2013, 33(1):155-170.
[5] YIN Honghui, YANG Zuodong. Three solutions for a navier boundary value system involving the(p(x), q(x))-biharmonic operator[J]. British Journal of Mathematics Computer Science, 2013, 3(3):281-290.
[6] YIN, Honghui, LIU Ying. Existence of three solutions for a Navier boundary value problem involving the p(x)-biharnonic operator[J]. Bull. Korean Math Soc, 2013, 50(6):1817-1826.
[7] AFROUZI G A, MIRZAPOUR M, RADULESCU V D. Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions[J]. Collectanea Mathematica, 2015, 5:1-17.
[8] KONG Lingju. Eigenvalues for a fourth order elliptic problem[J]. Proceedings of the American Mathematical Society, 2015, 143(1):249-258.
[9] 张申贵. 一类超线性p(x)-调和方程的无穷多解[J]. 山东大学学报(理学版), 2012, 47(10):116-120. ZHANG Shengui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation[J]. Journal of Shandong University(Natural Science), 2012, 47(10):116-120.
[10] AMROUSS A E, MORADI F, MOUSSOUI M. Existence of solutions for fourth-order PDES with variable exponents[J]. Electron J Differential Equations, 2009, 153:1-13.
[11] WILLEM M. Minimax theorems[M]. Boston: Birkhauser, 1996.
[12] DING Yanheng, LUAN Shixia. Multiple solutions for a class of nonlinear Schr(¨overo)dinger equations[J]. J Differential Equations, 2004, 207:423-457.
[1] ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37.
[2] JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103.
[3] SUN Guo-wei, MAI A-li. Multiple homoclinic solutions for second order nonlinear difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 51-54.
[4] ZHANG Shen-gui. Multiplicity of solutions for local superlinear p-kirchhoff-type equation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 61-68.
[5] ZHANG Guo-wei 1, CHEN Ang2. Infinitely connectivity of the wandering domain of#br# Baker’s original example [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 70-73.
[6] ZHANG Shen-gui. Infinitely many solutions for a class of superlinear p(x)-biharmonic equation [J]. J4, 2012, 47(10): 116-120.
[7] ZHANG Shen-gui. Multiplicity of periodic solution of a class of non-automous second order system [J]. J4, 2011, 46(11): 64-69.
[8] ZHU Hai-xia1, YAN Shi-lei2. Phase diagrams of random crystal field Blume-Cape model [J]. J4, 2011, 46(1): 51-55.
[9] HU Mo-Yin. Multiplicity results for a class of quasi-linear Neumann problems [J]. J4, 2009, 44(10): 39-42.
[10] ZHANG Yi-bin . The existence for the solution of the Laplace equation with an exponential Neumann boundary condition [J]. J4, 2008, 43(3): 48-53 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!