JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 54-57.doi: 10.6040/j.issn.1671-9352.0.2015.396

Previous Articles     Next Articles

An equivalent characterization of the choice axiom in a Topos

LU Tao1, WANG Xi-juan2, HE Wei3   

  1. 1. School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China;
    2. Department of mathematics, Nanjing University, Nanjing 210097, Jiangsu, China;
    3. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
  • Received:2015-08-24 Revised:2015-11-09 Online:2015-12-20 Published:2015-12-23

Abstract: We give the new definition of complete lattice object and the equivalent characterization of the choice axiom based on the partially ordered object in a Topos: the choice axiom is equivalent to that L is a continuous lattice object if and only if L is a constructive continuous lattice object.

Key words: Topos, the choice axiom, complete lattice object, partially ordered object

CLC Number: 

  • O189.11
[1] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002.
[2] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992.
[3] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972.
[4] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006.
[5] JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296.
[6] LAWVERE F W, ROSEBRUGH R. Sets for mathematics[M]. Combridge: Cambridge University Press, 2001.
[7] WOOD R J. Ordered sets via adjunctions[M]// Categorical Foundations. PEDICCHIO M, THOLEN W. Combridge: Combridge University Press, 2004.
[8] MITCHELL W, BENABOU J. Boolean topoi and the theory of sets[J]. Journal of Pure and Applied Algebra, 1972, 2:261-274.
[9] 卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389.
[10] KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[M]// Lecture Notes in Math Berlin: Springer-Verlag, 1975, 445:209-283.
[1] LU Tao, WANG Xi-juan, HE Wei. The supremum and infimum of partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 112-117.
[2] LU Tao, WANG Xi-juan, HE Wei. The operator theory on complete partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!