JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 87-94.doi: 10.6040/j.issn.1671-9352.0.2015.510

Previous Articles     Next Articles

Static output feedback robust H control for continuous-time positive systems

XU Yan-chao   

  1. Yantai Vocational College, Yantai 264670, Shandong, China
  • Received:2015-10-30 Online:2016-12-20 Published:2016-12-20

Abstract: A necessary and sufficient condition of static output feedback H control for continuous-time positive systems was obtained via bounded real lemma and linear matrix inequality. Based on the above condition, a sufficient condition of static output feedback robust H control for continuous-time positive systems was given. The conditions were established in terms of linear matrix inequalities and a matrix equality constraint. Furthermore, the desired H controller gain matrix could be determined via cone complementarity linearization techniques. Final, a state controller asspecial case of static output feedback ones was given and a numerical example was provided to illustrate the validity of the results.

Key words: positive systems, static output feedback, cone complementarity linearization, linear matrix inequality, robust H control

CLC Number: 

  • TP273
[1] BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences[M]. Philadelphia, PA: SIAM, 1994.
[2] DE SANTIS A, FARINA L. Identification of positive linear systems with Poisson output transformation[J]. Automatica, 2002, 38(5):861-868.
[3] FARINA L, RINALDI S. Positive linear systems: theory and its applications[M]. New York: Wiley, 2000.
[4] GURVITS L, SHORTEN R, MASON O. On the stability of switched positive linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(6):1099-1103.
[5] BENVENUTI L, FARINA L. A tutorial on the positive realization problem[J]. IEEE Transactions on Automatic Control, 2004, 49(5):651-664.
[6] NGOC P. Strong stability radii of positive linear time-delay systems[J]. International Journal of Robust and Nonlinear Control, 2005, 15(10):459-472.
[7] BACK J, ASTOLFI A. Design of positive linear observers for positive linear systems via coordinate transformations and positive realizations[J]. SIAM Journal on Control and Optimization, 2008, 47(1):345-373.
[8] 宋世君,冯俊娥,孟敏.受控正系统的弹性静态输出反馈鲁棒H控制[J].控制理论与应用,2014,31(5):671-676. SONG Shijun, FENG June, MENG Min.Robust resilient static output feedback H control for positive systems[J]. Control Theory & Applications, 2014, 31(5):671-676.
[9] FENG J, LAM J, SHU Z, et al. Internal positivity preserved model reduction[J]. International Journal of Control, 2010, 83(3):574-585.
[10] CHEN X, LAM J, LAM H. Positive filtering for positive Takagi-Sugeno fuzzy systems under l1 performance[J]. Information Sciences, 2015, 299(1):32-41.
[11] SHEN J, LAM J. l/L-gain analysis for positive linear systems with unbounded time-varying delays[J]. IEEE Transactions on Automatic Control, 2015, 60(3):857-862.
[12] 李振波,朱淑倩. 受控正时滞系统的弹性静态输出反馈镇定[J]. 山东大学学报(工学版),2011,41(3):46-52. LI Zhenbo, ZHU Shuqian. Resilient static output feedback stabilization for controlled positive time-delay systems[J]. Journal of Shandong University(Engineering Science), 2011, 41(3):46-52.
[13] MASON O, SHORTEN R. On linear copositiveLyapunov functions and the stability of switched positive linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(7):1346-1349.
[14] RAMI M A. Solvability of static output-feedback stabilization for LTI positive systems[J]. Systems & Control Letters, 2011, 60(9):704-708.
[15] YOSHIDA H, TANAKA T. Positive controllability test for continuous-time linear systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1685-1689.
[16] FENG J, LAM J, LI P, et al. Decay rate constrained stabilization of positive systems using static output feedback[J]. International Journal of Robust and Nonlinear Control, 2011, 21(1):44-54.
[17] LIAN J, LIU J, ZHUANG Y. Mean stability of positive Markov jump linear systems with homogeneous and switching transition probabilities[J]. IEEE Transactions on Circuits Systems II, 2015, 62(8):801-805.
[18] ZHU S, HAN Q, ZHANG C. Investigating the effects of time-delays on stochastic stability and designing l1-gain controllers for positive discrete-time Markov jump linear systems with time-delay[J]. Information Sciences, 2016, 355(10):265-281.
[19] GAHINET P, APKARIAN P. A linear matrix inequality approach to H control[J]. International Journal of Robust and Nonlinear Control, 1994, 4:421-448.
[20] 张卫, 鞠培军.广义变时滞区间系统的鲁棒H弹性控制[J]. 山东大学学报(理学版),2008,43(4):58-61. ZHANG Wei, JU Peijun. Robust resilient H control for interval singular systems with time-varying delays[J]. Journal of Shandong University(Nature Science), 2008, 43(4):58-61.
[21] 孙林, 郑煜, 姚娟. 不确定离散奇异系统的鲁棒非脆弱H状态反馈控制[J].山东大学学报(理学版),2011, 46(1):35-41. SUN Lin, ZHENG Yu, YAO Juan. Robust non-fragile H state feedback control for uncertainty discrete singular systems[J]. Journal of Shandong University(Nature Science), 2011, 46(1):35-41.
[22] YANG Guanghong, WANG Jianliang. Non-fragile H control for linear systems with multiplicative controller gain variations[J]. Automatica, 2001, 37(5):727-737.
[23] 鲁仁全, 苏宏业,薛安克, 等. 奇异系统的鲁棒控制理论[M]. 北京:科学出版社,2008.
[24] LI P, LAM J, SHU Z. H positive filtering for positive linear discrete-time systems: an augmentation approach[J]. IEEE Transactions on Automatic Control, 2010, 55(10):2337-2342.
[25] TANAKA T, LANGBORT C. The bounded real lemma for internally positive systems and H structured static state feedback[J]. IEEE Transactions on Automatic Control, 2011, 56(9):2218-2223.
[26] EI GHAOUI L, OUSTRY F, AITRAMI M. A cone complementarity linearization algorithm for static output-feedback and related problems[J]. IEEE Transactions on Automatic Control, 1997, 42(8):1171-1176.
[1] CHEN Nai-xun1, MA Shu-ping2*. Static output feedback stabilization for a class of nonlinear discrete-time descriptor Markov jump systems [J]. J4, 2013, 48(7): 93-100.
[2] ZHANG Hua-ping1,2, ZHANG Jian-peng3, MA Shu-ping4, FAN Hong-da1. Robust H filter design for discrete-time singular switched systems with uncertainties and time-varying delays [J]. J4, 2012, 47(7): 59-69.
[3] ZHANG Hua-ping1,2, MA Shu-ping3, FAN Hong-da1. Robust stabilization for uncertain discrete-time Markov jump descriptor systems with time-varying delays via output feedback controllers [J]. J4, 2012, 47(1): 62-71.
[4] FAN Zhong-guang1, 2, LIANG Jia-rong3, XIAO Jian4. Robust and non-fragile H control for linear time-varying uncertain periodic singular systems with parameter uncertainty [J]. J4, 2011, 46(1): 20-27.
[5] JIAO Jian-min. Robust stability analysis of a class of uncertain neutral systems [J]. J4, 2011, 46(1): 28-34.
[6] SUN Lin, ZHENG Yu, YAO Juan. Robust non-fragile Hstate feedback control for  uncertainty discrete singular systems [J]. J4, 2011, 46(1): 35-41.
[7] LI Ya-nan1, LIU Lei-po2, WANG Yu-guang3. Passive sliding mode control for uncertain time-delay systems subjected to input nonlinearity [J]. J4, 2010, 45(6): 99-104.
[8] NIU Yan-yan, XING Wei. Faulttolerant control for uncertain discrete-time switched systems with nonlinear term [J]. J4, 2010, 45(5): 52-57.
[9] . Study on guaranteed cost control problems for a class of discrete impulsive switched  system with time delays and parameter uncertainty [J]. J4, 2009, 44(5): 56-61.
[10] YAN Peng, SHEN Yanjun, WANG Jianfeng. Stability analysis of a class of neutral type singular systems [J]. J4, 2009, 44(4): 66-71 .
[11] ZHANG Jia-Cheng, TUN Bao-Wei. Mixed type guaranteed cost controller design for neutral systems with nonlinearity [J]. J4, 2009, 44(10): 67-74.
[12] WANG Shun-kang,WANG Lin-shan . Global exponential stability for static neural network models with time-varying delays and Markovian jumping parameters [J]. J4, 2008, 43(4): 81-84 .
[13] CHEN Li . The robust fault diagnosis filter design for uncertain singular systems [J]. J4, 2007, 42(7): 62-65 .
[14] LI Cui-cui,SHEN Yan-jun*,ZHU Lin . Finite time control of an uncertain linear singular system with a time-varying disturbance [J]. J4, 2007, 42(12): 104-109 .
[15] CHEN Li, . LMI approach to design the robust fault diagnosis residual generator for the singular systems based on the state observer [J]. J4, 2007, 42(1): 24-27 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!