JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (6): 65-69.doi: 10.6040/j.issn.1671-9352.0.2015.536

Previous Articles     Next Articles

Neighborhood systems

LU Tao1, HE Wei2*   

  1. 1. School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, Anhui, China;
    2. School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
  • Received:2015-11-09 Online:2016-06-20 Published:2016-06-15

Abstract: The concept of neighborhood systems which is common generalizations of topological spaces, locales and topological systems is introduced. And it is proved that the topological space category Top, the topological neighborhood systems category TopN, the localic neighborhood systems category NSL and the topological systems category TopS can be embedded as full subcategories of the category NS of neighborhood systems.

Key words: topological space, neighborhood system, topological system, locale

CLC Number: 

  • O189.11
[1] STEVEN VICKERS. Topology via logic[M]. Cambridge: Cambridge University Press, 1989.
[2] ADAMEK J, PEDICCHIO M C. A remark on topological spaces, grids, and topological systems[J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 1997, 38:217-226.
[3] BARR M, PEDICCHIO M C. Topop is a quasi-variety[J]. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 1995, 36:3-10.
[4] JOHNSTONE P T. Stone spaces[M]. Cambridge: Cambridge University Press, 1982.
[5] JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002.
[6] ISBELL J R. First steps in descriptive theory of locales[J]. Trans Amer Math Soc, 1991, 327:353-371.
[7] MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972.
[8] 贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006.
[9] MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992.
[10] ENGELKING R. General topology[M] // Sigma Series in Pure Math: Vol6. Berlin: Heldermann, 1989.
[1] YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118.
[2] LIU Min, ZHAO Bin*. Localic nuclei and conuclei on Quantales [J]. J4, 2013, 48(2): 81-87.
[3] LIU Chun-hui1,2. Prime fuzzy ⊙ideals and its topological properties of
regular residuated lattices
[J]. J4, 2013, 48(12): 52-56.
[4] SHEN Wen-xia, LI Sheng-gang. Disconnectednesses of bi-pre-topological spaces [J]. J4, 2013, 48(10): 56-61.
[5] JIN Qiu, LI Ling-qiang*, SUN Shou-bin, MENG Guang-wu. The Ir-functor on L-Top [J]. J4, 2011, 46(12): 124-126.
[6] WANG Yan-Jun, MA Bao-Guo. L-smooth less strong irresolute weak mappings [J]. J4, 2010, 45(2): 95-98.
[7] HE Xiao-li1, FU Wen-qing2. The local connectedness of  L-pretopological spaces: product and L-good extension [J]. J4, 2010, 45(10): 78-82.
[8] . Description of the coutability axiom by using the theory of preconvergence classes of families of nets [J]. J4, 2009, 44(6): 25-28.
[9] YU Rongrong, LI Shenggang. [J]. J4, 2009, 44(4): 15-20 .
[10] LIU Hong-ping,MENG Guang-wu . *-Nearly paracompactness in L-topological spaces [J]. J4, 2008, 43(8): 38-41 .
[11] HU Xiao-nan,MENG Guang-wu . Induced L-smooth topological space [J]. J4, 2008, 43(8): 64-68 .
[12] HAN Hong-xia . (Strongly)Relative semi-compactness in L-topological spaces [J]. J4, 2008, 43(6): 64-67 .
[13] LIU Hong-ping,MENG Guang-wu . The *-coparacompactness in L-bitopological spaces [J]. J4, 2008, 43(4): 42-46 .
[14] LI Ning . Descriptions of the pre-R0 separation axiom in fuzzifying topological space [J]. J4, 2008, 43(4): 17-20 .
[15] LIU Hong-ping,MENG Guang-wu . F*-Paracompactness in L-topological spaces [J]. J4, 2008, 43(3): 75-79 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!