JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (10): 72-77.doi: 10.6040/j.issn.1671-9352.0.2015.569
Previous Articles Next Articles
CLC Number:
[1] ORLIK P, TERAO H. Arrangements of hyperplanes[M] // Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag, 1992:1-325. [2] YOSHINAGA M. Characterization of a free arrangement and conjecture of Edelman and Reiner[J]. Inventiones Mathematicae, 2004, 157(2):449-454. [3] ABE T, TERAO H. The freeness of Shi-Catalan arrangements[J]. European Journal of Combinatorics, 2011, 32(8):1191-1198. [4] GAO Ruimei, PEI Donghe, TERAO H. The Shi arrangement of the type Dl[J]. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2012, 88:41-45. [5] SUYAMA D, TERAO H. The Shi arrangements and the Bernoulli polynomials[J]. The Bulletin of the London Mathematical Society, 2012, 44(2):563-570. [6] BARAKAT M, CUNTZ M. Coxeter and crystallographic arrangements are inductively free[J]. Advances in Mathematics, 2012, 229(1):691-709. [7] ABE T, TERAO H. Simple-root bases for Shi arrangements[J]. Journal of Algebra, 2015, 422(6):89-104. [8] 高瑞梅. G2型Shi-Catalan构形的自由性[J]. 山东大学学报(理学版), 2014, 49(12):66-70. GAO Ruimei. The freeness of Shi-Catalan arrangements of type G2[J]. Journal of Shandong University(Natural Science), 2014, 49(12):66-70. [9] STANLEY R P. Supersolvable lattices[J]. Algebra Universalis, 1972, 2(1):197-217. [10] EDELMAN P H, REINER V. Free hyperplane arrangements between An-1 and Bn[J]. Mathematische Zeitschrift, 1994, 215(1):347-365. [11] JIANG Tan, YAU S S T, YEH L Y. Simple geometric characterization of supersolvable arrangements[J]. The Rocky Mountain Journal of Mathematics, 2001, 31(1):303-312. [12] JIANG Guangfeng, YU Jianming. Supersolvability of complementary signed-graphic hyperplane arrangements[J]. The Australasian Journal of Combinatorics, 2004, 30:261-274. [13] BERTHOMÉ P, CORDOVIL R, FORGE D, et al. An elementary chromatic reduction for gain graphs and special hyperplane arrangements[J]. Electronic Journal of Combinatorics, 2009, 16(1):1878+892. [14] GAO Ruimei, PEI Donghe. The supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238. [15] MU Lili, STANLEY R P. Supersolvability and freeness for ψ-graphical arrangements[J]. Discrete and Computational Geometry, 2015, 5:96-126. [16] STANLEY R P. Valid orderings of real hyperplane arrangements[J]. Discrete and Computational Geometry, 2015, 53(4):965-970. [17] MACINIC A D, PAPADIMA S. On the monodromy action on milnor fibers of graphic arrangements[J].Topology and its Applications, 2009, 156(4):761-774. [18] ABE T, TERAO H, Wakefield M. The characteristic polynomial of a multiarrangement[J]. Advances in Mathematics, 2007, 215(2):825-838. [19] ATHANASIADIS C A. Characteristic polynomials of subspace arrangements and finite fields[J]. Advances in Mathematics, 1996, 122(2):193-233. [20 ] STANLEY R P. An introduction to hyperplane arrangements[M]. New Jersey: IAS/Park City Math Ser, 2004. |
[1] | GAO Rui-mei, CHU Ying. Freeness of arrangements between the Weyl arrangements of types An-1 and Bn [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 70-75. |
[2] | GAO Rui-mei1, PEI Dong-he2. The algorithms of characteristic polynomial and supersolvability#br# of a hyperplane arrangement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 51-57. |
[3] | CAO Hai-song, WU Jun-liang. On localization of eigenvalues in elliptic region [J]. J4, 2012, 47(10): 49-53. |
[4] | ZHANG Shuang, PEI Dong-he, GAO Rui-mei. Generalized p-generic center parallel arrangements [J]. J4, 2010, 45(8): 32-35. |
[5] | CUI Xiu-Peng, PEI Dong-He, GAO Rui-Mei. The classification of a sphere arrangement in S2andits characteristic polynomial [J]. J4, 2010, 45(2): 10-13. |
[6] | SUN Zhiye, PEI Donghe, GAO Ruimei. [J]. J4, 2009, 44(1): 59-62 . |
[7] | ZHANG Sheng-li,PAN Zheng-hua,FENG Shan-zhuang . Ordering of the largest eigenvalues of trees [J]. J4, 2008, 43(6): 37-43 . |
[8] | JIA Zhi-gang,ZHAO Jian-li,ZHANG Feng-xia . Eigen-problem and singular value decomposition of the generalized symmetric matrix [J]. J4, 2007, 42(12): 15-18 . |
|