JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 42-46.doi: 10.6040/j.issn.1671-9352.0.2015.627
Previous Articles Next Articles
CLC Number:
[1] RABINOWITZ P H. On subharmonic solutions of Hamiltonian systems[J]. Communications on Pure and Applied Mathematics, 1980, 33(5): 609-633. [2] JIANG Qin, TANG Chunlei. Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems[J]. Journal of Mathematical Analysis and Applications, 2007, 328(1): 380-389. [3] WANG Zhiyong, XIAO Jianzhong. On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems[J]. Applied Mathematics Letters, 2015, 40: 72-77. [4] FEI Guihua. On periodic solutions of superquadratic Hamiltonian systems[J]. Electronic Journal of Differential Equations, 2002, 8: 1-12. [5] WANG Zhiyong, ZHANG Jihui, ZHANG Zhitao. Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70(10): 3672-3681. [6] MAWHIN J, WILLEM M. Critical point theory and Hamiltonian Systems[M]. New York: Springer-Verlag, 1989. [7] RABINOWITZ P H. Minimax methods in critical point theory with applications to differential equations[M]. Rhode Island: American Mathematical Society, 1986. [8] XU Bo, TANG Chunlei. Some existence results on periodic solutions of ordinary p-Laplacian systems[J]. Journal of Mathematical Analysis and Applications, 2007, 333(2): 1228-1236. [9] MA Shiwang, ZHANG Yuxiang. Existence of infinitely many periodic solutions for ordinary p-Laplacian systems[J]. Journal of Mathematical Analysis and Applications, 2009, 351(1): 469-479. [10] 黎丽, 陈凯, 张琼芬, 等. 一类具脉冲效应的p-Laplace系统周期解的存在性[J]. 数学的实践与认识, 2013, 43(5): 247-256. LI Li, CHEN Kai, ZHANG Qiongfen, et al. Periodic solutions for a class of p-laplacians systems with impulsive effects[J].Mathematics in Practice and Theory, 2013, 43(5): 247-256. |
[1] | . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88. |
[2] | WANG Shuang-ming. Dynamical analysis of a class of periodic epidemic model with delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 81-87. |
[3] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
[4] | XU Man. Existence of positive periodic solutions of impulsive functional differential equations with two parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 69-74. |
[5] | GUO Ying. Pseudo almost solutions of difference equations [J]. J4, 2012, 47(2): 42-46. |
[6] | WANG Xiao-ming, LIANG Xiao-bin. Aubry-Mather sets for a class of asymmetric Duffing equations [J]. J4, 2011, 46(11): 59-63. |
|