JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 17-23.doi: 10.6040/j.issn.1671-9352.0.2016.112

Previous Articles     Next Articles

Semisimplicity of the categories of Hom-Yetter-Drinfeld modules

GUO Shuang-jian, LI Yi-zheng   

  1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang 550025, Guizhou, China
  • Received:2016-03-14 Online:2016-12-20 Published:2016-12-20

Abstract: Let k be a field, and(H,α)a monoidal Hom-Hopf algebra with bijective antipode. If(H,α)is commutative, noetherian, semisimple and cosemisimple, then the category HHYD H of Hom-Yetter-Drinfeld modules is semisimple. That is Let(H,α)be commutative. Assume that HHYD H satisfies some condition, and that the functor(-)coH:HHYD H→H(Mk)is exact. If (M,μ)∈HHYD H is finitely generated as an(H,α)-module, then (M,μ) is a projective object in HHYD H.

Key words: noetherian, Hom-Yetter-Drinfeld modules, semisimple, commutation, monoidal Hom-Hopf algebras

CLC Number: 

  • O153.3
[1] MAKHLOUF A, SILVESTROV S D. Hom-algebra stuctures[J]. J Gen Lie Theory Appl, 2008, 3(2):51-64.
[2] CAENEPEEL S, GOYVAERTS I. Monoidal Hom-Hopf algebras[J]. Comm Algebra, 2011, 39:2216-2240.
[3] MAKHLOUF A, PANAITE F. Yetter-Drinfeld modules for Hom-bialgebras[J]. J Math Phys, 2014, 55(1):013501.
[4] CHEN Yuanyuan, WANG Zhongwei, ZHANG Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications[J]. J Math Phys, 2013, 54(7):073515.
[5] CHEN Yuanyuan, ZHANG Liangyun. The category of Yetter-Drinfeld Hom-modules and the quantum Hom-Yang-Baxter equation[J]. J Math Phys, 2014, 55(3):031702.
[6] LIU Ling, SHEN Bingliang. Radfords biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras[J]. J Math Phys, 2014, 55:031701.
[7] LI Haiying, MA Tianshui. A construction of Hom-Yetter-Drinfeld category[J]. Colloq Math, 2014, 137:43-65.
[8] GUO Shuangjian, ZHANG Xiaohui, WANG Shengxiang. Braided monoidal categories and Doi Hopf modules for monoidal Hom-Hopf algebras[J]. Colloq Math, 2016, 143(1):79-104.
[9] CAENEPEEL S, GUÉDÉNON T. Semisimplicity of the categories of Yetter-Drinfeld modules and Long dimodules[J]. Comm. Algebra, 2004, 32(7):2767-2781.
[1] CHEN Dong, WANG Fang-gui, JIAN Hong, CHEN Ming-zhao. Structure of modules over 2-strongly Gorenstein semisimple ring with its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 24-30.
[2] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[3] YOU Mi-man, ZHAO Xiao-fan. Diagonal crossed products over monoidal Hom-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 76-80.
[4] LU Qi1, BAO Hong-wei1, LIANG Liang2. WGP-injectivity of rings#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 35-39.
[5] TANG Jian1, XIE Xiang-yun2. Completely prime and prime fuzzy ideals in ordered semigroups [J]. J4, 2010, 45(8): 93-98.
[6] YIN Xiao-bin1, HUANG Xiao-lin1, WANG Kai-yun2. Endomorphism rings of quasi AP-injective modules [J]. J4, 2010, 45(6): 31-34.
[7] JIAO Yu-Juan, ZHANG Shen-Gui. S-Noetherianess of A+xB[[x]] [J]. J4, 2009, 44(8): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!