JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (2): 77-84.doi: 10.6040/j.issn.1671-9352.0.2016.182

Previous Articles     Next Articles

Symmetry, reduction and exact solutions of the extended KP-Benjamin-Bona-Mahoney equation

LI Yu, LIU Xi-qiang*   

  1. School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, Shandong, China
  • Received:2016-04-26 Online:2017-02-20 Published:2017-01-18

Abstract: By applying the direct symmetry method, the classical Lie symmetry and reduced equation of the extended KP-Benjamin-Bona-Mahoney equation are obtained. At the same time, through the reduced equation, a great many of solutions are derived by solving the reduction equations with(G'/G)-expansion method and the tanh function expansion method and Riccati auxiliary equation, including travelling wave solutions, the rational function solutions, hyperbolic function solutions, the trigonometric function solutions and so on. Finally, the conservation laws of the equation are obtained by using the symmetry and adjoint equations.

Key words: KP-Benjamin-Bona-Mahoney equation, reduction equation, conservation laws, exact solution, Lie point symmetry

CLC Number: 

  • O175.2
[1] 陈美,刘希强.Konopelchenko-Dubrovsky方程组的对称,精确解和守恒律[J]. 纯粹数学与应用数学, 2011,27(4):533-539. CHEN Mei, LIU Xiqiang. Exact solutions and conservation laws of the Konopelchenko-Dubrovsky equations[J]. Pure and Applied Mathematics, 2011,27(4):533-539.
[2] HIROTA R, SATSUMA J. Soliton solutions of a coupled Korteweg-de Vries equation[J]. Phy Lett A,1981, 85(8-9):407-408.
[3] HE Jihuan, WU Xuhong. Exp-function method for nonlinear wave equation [J]. Chaos Solitons and Fractals, 2006, 30(3):700-708.
[4] ZHENG Bin. Exp-function method for solving fractional partial differential equations[J]. The Scientific World Journal, 2013, 2013: 465723.
[5] 李宁,刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解[J]. 物理学报,2013, 62(16):18-24. LI Ning, LIU Xiqiang. Symmetries, reductions and exact solutions of Broer-Kau-Kupershmidt system[J]. Acta Physica Sinica, 2013, 62(16):18-24.
[6] 张颖元,刘希强,王岗伟.(2+1)维非线性发展方程的对称约化和显式解[J]. 量子电子学报,2012,29(4):411-416. ZHANG Yingyuan, LIU Xiqiang, WANG Gangwei. Symmetries, reductions and explicit solution of the(2+1)dimensional nonlinear evolution equation[J]. Chinese Journal of Quantum Electronics, 2012, 29(4):411-416.
[7] ZHAO Xueqin, ZHI Hongyan, ZHANG Hongqing. Improved Jacobi-function method with symbolic computation to construct new double-periodic solutions for the generalized Ito system[J]. Chaos, Solitions and Fractals, 2006, 28(1):112-126.
[8] ZHANG Hongqing. Extended Jacobi elliptic function expansion method and its applications[J]. Commun Nonlinear Sci Numer Simul, 2007, 12(5):627-635.
[9] FAN Engui, ZHANG Hongqing. A note on the homogeneous balance method [J]. Phys Lett A, 1998, 246(5):403-406.
[10] FAN Engui, HONA Y C. Generalized tanh method extended to special types of nonlinear equations[J]. Zeitschrift fur Naturforschung A-Journal of Physical Sciences, 2002, 57(8):692-700.
[11] WAZWAZ A M. The extended tanh method for the Zakharov-Kuznetsov(ZK)equation, the modified ZK equation, and its generalized forms[J]. Commun Nonlinear Sci Numer Simul, 2008,13(6):1039-1047.
[12] WAZWAZ A M. Exact solutions of compact and noncompact structures for the KP-BBM equation[J]. Applied Mathematics and Computation, 2005, 169(1):700-712.
[13] WAZWAZ A M. The extended tanh method for new compact and noncompact solutions for the KP-BBM and the ZK-BBM equations[J]. Chaos, Solitons & Fractals, 2008, 38(5):1505-1516.
[14] ABDOU M A. Exact periodic wave solutions to some nonlinear evolution equations[J]. International Journal of Nonlinear Science, 2008, 6(2):145-153.
[15] SONG Ming, YANG Chenxi, ZHANG Bengong. Exact solitary wave solutions of the Kadomtsov-Petviashvili-Benjamin-Bona-Mahony equation[J]. Applied Mathematics and Computation, 2010, 217(4):1334-1339.
[16] ADEM K R, KHALIQUE C M. Exact solutions and conservation laws of a(2+1)-dimensional nonlinear KP-BBM equation[J]. Hindawi Publishing Corporation, 2013, 2013:1-5.
[1] LIU Yong, LIU Xi-qiang. Symmetry, reductions and exact solutions of the (2+1)-dimension Caudrey-Dodd-Gibbon equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 49-55.
[2] GUO Peng, ZHANG Lei, WANG Xiao-yun, SUN Xiao-wei. [J]. J4, 2012, 47(12): 115-120.
[3] XIN Xiang-peng, LIU Xi-qiang, ZHANG Lin-lin. Symmetry reductions and exact solutions of a (2+1)-dimensional  nonlinear evolution equation [J]. J4, 2010, 45(8): 71-75.
[4] GUO Peng, WAN Gui-xin, WANG Xiao-yun, SUN Xiao-wei. Explicit and exact solution to a nonlinear wave equation in circular-rod waveguide [J]. J4, 2010, 45(11): 122-126.
[5] GUO Xiao-Yi, XU Meng-Yu. An exact solution of unsteady Couette flow of generalized Oldroyd-B fluid [J]. J4, 2009, 44(10): 60-63.
[6] ZHU Hong ,LIU Xiong . White noise functional solutions of a Wick-type stochastic KdV-MKdV equation [J]. J4, 2008, 43(5): 45-49 .
[7] QI Hai-tao,JIN Hui . Exact solutions for the unsteady flow of generalized second [J]. J4, 2006, 41(4): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!