JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (6): 105-110.doi: 10.6040/j.issn.1671-9352.0.2016.318
XIE Shu-cui1, SHAO Ai-xia2, ZHANG Jian-zhong2*
CLC Number:
[1] CHAUM D. Blind signature for untraceable payments[J]. Advances in Cryptology Proceedings of Crypto'82. New York: Henum Press, 1983: 199-203. [2] MAMBO M, USUDA K, OKAMOTO E. Proxy signatures: delegation of the power to sign messages[J]. IEICE Transactions on Fundamentals of Electronics, Communication and Computer Sciences E79-A(9), 1996: 1338-1351. [3] SHOR P W. Algorithms for quantum computation: discrete logarithms and factoring[J]. Symposium on Foundations of Computer Science, 1994: 124-134. [4] GOTTESMAN D, CHUANG I. Quantum digital signatures[DB/OL].(2001-05-08)[2016-02-15]. arXiv: quant-ph/0105032. [5] LEE H, HONG C, KIM H, et al. Arbitrated quantum signature scheme with message recovery[J]. Physics Letters A, 2004, 321(5-6):295-300. [6] WEN Xiaojun, LIU Yun, ZHANG Pengyun. Digital multi-signature protocol based on teleportation[J]. Wuhan University Journal of Natural Sciences, 2007, 12(1):029-032. [7] WEN Xiaojun, LIU Yun, ZHOU Nanrun. Secure quantum telephone[J]. Optics Communication, 2007, 275:278-282. [8] WANG Tianyin, WEI Zongli. One-time proxy signature based on quantum cryptography[J]. Quantum Information Processing, 2012, 11(2):455-463. [9] ZHANG Kejia, ZHANG Weiwei, LI Dan. Improving the security of arbitrated quantum signature against the forgery attack[J]. Quantum Information Processing, 2013, 12(8):2655-2699. [10] ZOU Xiangfu, QIU Daowen. Attack and improvements of fair quantum blind signature schemes[J]. Quantum Information Processing, 2013, 12(6):2071-2085. [11] WANG Tianyin, CAI Xiaoqiu.Security of a sessional blind signature based on quantum cryptograph[J]. Quantum Information Processing, 2014, 13(8):1677-1685. [12] WANG Tianyin, CAI Xiaoqiu, REN Yanli, et al. Security of quantum digital signatures for classic messages[J]. Scientific Reports, 2015, 5:9231. [13] BARNUM H, PEAU C, GOTTESMAN D, et al. Authentication of quantum messages[J]. Computer Science, 2002, 364(9438):449-458. [14] HARN L. New digital signature scheme based on logarithm[J].Electron Letters,1994, 30(5):396-398. [15] WEN Xiaojun, LIU Yun, SUN Yu. Quantum multi-signature protocol based on teleportation[J]. Zeitschrift Fur Naturforschung A, 2014, 62(62):147-151. [16] ZUO Huijuan, ZHANG Kejia, SONG Tingting. Security analysis of quantum multi-signature proto-col based on teleportation[J]. Quantum Information Processing, 2013, 12(7):2343-2353. [17] TIAN Yuan, CHEN Hong, JI Shufan, et al. A broadcasting multiple blind signature scheme based on quantum teleportation[J]. Optical & Quantum Electronics, 2013, 46(6):769-777. [18] CAO Haijing, WANG Huaisheng, LI Pengfei. Quantum proxy multi-signature scheme using genuine entangled six qubits state[J]. International Journal of theoretical Physics, 2013, 52(4):1188-119. [19] CAO Haijing, HUANG Jun, YU Yaofeng, et al. A quantum proxy signature scheme based on genuine five-qubit entangled state[J]. International Journal of theoretical Physics, 2014,53(9):3095-3100. [20] CAO Haijing, ZHANG Jiafu, LIU Jian. A new quantum proxy multi-signature scheme using maximally entangled seven-qubit states[J]. International Journal of theoretical Physics, 2016, 55:1-7. [21] TIAN Juanhong, ZHANG Jianzhong, LI Yanping. A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled State[J]. International Journal of theoretical Physics, 2015, 55(2): 1-8. [22] LI Dong, XIU Xiaoming, GAO Yajun, et al. Controlled three-party communication using GHZ-like state and imperfect bell-state measurement[J]. Optics Communication, 2011, 284(3): 905-908. [23] SHOR P W, PRESKILL J. Simple proof of security of the BB84 quantum key distribution protoc-ol[J]. Physical Review Letters, 2000, 85(2):441-444. [24] MAYERS D. Unconditional security in quantum cryptography[J]. Journal of ACM, 1998, 48(3):351-406. [25] INAMORI H, LUTKENHAUS N, MAYERS D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2004, 41(3):599-627. |
[1] | LI Ang, GUAN Jie. Construction methods for a class of lightweight optimal S-boxes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 85-94. |
[2] | CHENG Lu, WEI Yue-chuan, LI An-hui, PAN Xiao-zhong. Multidimensional zero-correlation linear cryptanalysis on Midori [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 88-94. |
[3] | LIU Ge, LIU Qing-qing, ZHANG Jian-zhong. Random number extraction mechanism based on quantum measurement [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 44-48. |
[4] | WANG Wei-li, HU Bin, ZHAO Xiu-feng. An efficient multi-identity-based fully homomorphic encryption scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(5): 85-94. |
[5] | . A compact construction for non-monotonic online/offline CP-ABE [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 78-86. |
[6] | . Linear complexity of balanced quaternary generalized cyclotomic sequences with Period pq [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 145-150. |
[7] | SUN Tian-feng, HU Bin. On construction of resilient functions with maximum algebraic immunity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 106-113. |
[8] | YIN Qing, WANG Nian-ping. Security evaluation for Piccolo structure against differential and linear cryptanalysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 132-142. |
[9] | ZHUO Ze-peng, CHONG Jin-feng, WEI Shi-min. Constructions of bent-negabent Boolean functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 47-51. |
[10] | DONG Xiang-zhong, GUAN Jie. Linear properties of the round function of SIMON family of block ciphers [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 49-54. |
[11] | WANG Jin-Ling, LAN Juan-Li. A special generalized self-shrinking sequence on GF(q) [J]. J4, 2009, 44(10): 91-96. |
[12] | ZHANG Li-jiang,WANG Wei,WEI Pu-wen . (1, t) encryption based on the Weil pairing [J]. J4, 2007, 42(10): 9-12 . |
[13] | WANG Jin-ling,LIU Zong-cheng . The main-controlled generator [J]. J4, 2008, 43(1): 81-87 . |
[14] | YU Jing-zhi,ZHANG Wen-ying and LIU Xiang-zhong . A method for retrieving the algebraic normal form of a single-cycle T-function by its continuous 2n-1 states [J]. J4, 2007, 42(4): 14-18 . |
[15] | ZHUO Ze-peng, CHONG Jin-feng, WEI Shi-min. On Nega-Hadamard transform and negabent functions [J]. J4, 2013, 48(7): 29-32. |
|