JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 40-47.doi: 10.6040/j.issn.1671-9352.0.2016.330

Previous Articles     Next Articles

The pointwise estimates of solutions to the Cauchy problem of Keller-Segel equations with cross-diffusion

DUAN Shuang-shuang, QIAN Yuan-yuan   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2016-07-10 Online:2017-04-20 Published:2017-04-11

Abstract: We consider the Canchy problem for a class of Keller-Segel equations with cross-diffusion. By utilizing the method of Greens function, we obtain the pointwise estimates of solutions to the Cauchy problem for small initial data, and the W s,p(1≤p≤∞) decay properties of solutions.

Key words: Greens function, decay rates, Keller-Segel model, pointwise estimates, chemotaxis

CLC Number: 

  • O175.2
[1] KELLER E F, SEGEL L A. Initiation of slime mold aggregation viewed as an instability[J]. Journal of Theoretical Biology, 1970, 26(3):399-415.
[2] LIN Changshou, NI Weiming, TAKAGI I. Large amplitude stationary solutions to a chemotaxis system[J]. Journal of Differential Equations, 1998, 72(1):1-27.
[3] HITTMEIR S, J(¨overU)NGEL A. Cross diffusion preventing blow-up in the two-dimensional Keller-Segel mode[J]. SIAM Journal on Mathematical Analysis, 2011, 43(2):997-1022.
[4] CARRILLO J A, HITTMEIR S, J(¨overU)NGEL A. Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[J]. Math Models Methods Appl Sci, 2012, 22(12):1250041.1-1250041.35.
[5] NAGAI T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains[J]. Journal of Inequalities and Applications, 2001, 6(1):37-55.
[6] XIANG Tian. On a class of Keller-Segel chemotaxis systems with cross-diffusion[J]. Journal of Differential Equations, 2015, 259(8):4273-4326.
[7] HORSTMANN D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[J]. Jahresber Deutsch Math Verein, 2004, 106(2):51-70.
[8] WANG Weike. Nonlinear evolution systems and Greens function[J]. Acta Mathematica Scientia, 2010, 30(6):2051-2063.
[9] LIU Taiping, ZENG Yanni. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws[M]. Providence: American Mathematical Scoiety, 1997.
[10] WANG Weike, WU Zhigang. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions[J]. Journal of Differential Equations, 2010, 248(7):1617-1636.
[11] LIU Taiping, WANG Weike. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd-dimension[J]. Communications in Mathematical Physics, 1998, 196(1):145-173.
[12] WANG Weike, YANG Tong. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions[J]. Journal of Differential Equations, 2001, 173(2):410-450.
[13] CHEN Jiao, WANG Weike. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space[J]. Communications on Pure and Applied Analysis, 2014, 13(1):307-330.
[14] SHI Renkun, WANG Weike. The piontwise estimates of solutions to the Cauchy problem of a chemotaxis model[J]. Chinese Annals of Mathematics, Series B, 2016, 37(1):111-124.
[15] STEIN E M. Singular integrals and differentiability properties of functions[M]. Princeton: Princeton University Press, 1970.
[16] LI Fengbai, WANG Weike. The piontwise estimates of solutions to the parabolic conservation law in multi-dimensions[J]. Nonlinear Differential Equations and Applications, 2014, 21(1):87-103.
[1] CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!