JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 83-86.doi: 10.6040/j.issn.1671-9352.0.2016.364
Previous Articles Next Articles
DENG Yi-hua
CLC Number:
[1] CHEEGER J, GROMOLL D. The splitting theorem for manifolds of nonnegative Ricci curvature[J]. J Differential Geom, 1971, 6:119-128. [2] TOPONOGOV V A. Riemannian spaces containing straight lines[J]. Dokl Akad Nauk SSSR, 1959, 127:977-979. [3] LICHNEROWICZ A. Varietes riemanniennes a tensor C non negatif[J]. C R Acad Sc Paris Serie A, 1970, 271:A650-A653. [4] MUNTEANU O, WANG J P. Analysis of weighted Laplacians and applications to Ricci solitons[J]. Comm Anal Geom, 2012, 20:55-94. [5] DUNG N T, SUNG C J A. Smooth metric measure spaces with weighted Poincaré inequality[J]. Math Z, 2013, 273:613-632. [6] DUNG N T, SUNG C J A. Manifolds with a weighted Poincaré inequality[J]. Proc Amer Math Soc, 2014, 142:1783-1794. [7] WANG Linfeng. A splitting theorem for the weighted measure[J]. Ann Global Anal Geom, 2012, 42:79-89. [8] WU Jiayong. A note on the splitting theorem for the weighted measure[J]. Ann Glob Anal Geom, 2013, 43:287-298. [9] DUNG N T. A splitting theorem on smooth metric measure spaces[J]. Arch Math, 2012, 99:179-187. [10] SU Yanhui, ZHANG Huichun. Rigidity of manifolds with Bakry-Émery Ricci curvature bounded below[J]. Geom Dedicata, 2012, 160:321-331. [11] FANG Fuquan, LI Xiangdong, ZHANG Zhenlei. Two generalizations of Gheeger-Gromoll splitting theorem via Bakry-Émery Ricci curvature[J]. Ann Inst Fourier, 2009, 59:563-573. [12] PETER L, WANG Jiaping. Weighted Poincaré inequality and rigidly of complete manifolds[J]. Ann Scient, Éc Norm Sup, 4E série, Tome, 2006, 39:921-982. [13] WEI Guofang, WYLIE W. Comparison geometry for the Bakry-Émery Ricci tensor[J]. J Differential Geom, 2009, 83:377-405. |
No related articles found! |
|