JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 6-12.doi: 10.6040/j.issn.1671-9352.0.2016.406

Previous Articles     Next Articles

A modified FR spectral conjugate gradient method with Wolfe line search

LIN Sui-hua   

  1. Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities, Chongzuo 532200, Guangxi, China
  • Received:2016-09-02 Online:2017-04-20 Published:2017-04-11

Abstract: A modified FR spectral conjugate gradient method is proposed for unconstrained optimization. This method can automatically generate descent direction at every iterations depending on no any line search. Under the conventional assumption, it is proved that the corresponding method with Wolfe line search is globally convergent. The numerical results show that the spectral conjugate gradient method is effective.

Key words: spectral conjugate gradient method, Wolfe line search, global convergence, unconstrained optimization

CLC Number: 

  • O221
[1] 戴彧虹,刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报,2014,18(1):69-92. DAI Yuhong, LIU Xinwei. Advances in linear and nonlinear programming[J]. OR Transactions, 2014, 18(1):69-92.
[2] 简金宝,江羡珍,尹江华. 非线性共轭梯度法研究进展[J]. 玉林师范学院学报, 2016, 37(2):3-10. JIAN Jinbao, JIANG Xianzhen, YIN Jianghua. Research progress in nonlinear conjugate gradient method[J]. Journal of Yulin Normal University(Natural Science), 2016, 37(2):3-10.
[3] POWELL M J D. Nonconvex minimization calculations and the conjugate gradient method[M]. Berlin, Springer, 1984.
[4] GILBERT J C, NOCEDAL J. Global convergence property of conjugate gradient methods for optimization[J]. SIAM J Optim, 1992, 2(1):21-42.
[5] WEI Zengxin, YAO Shengwei, LIU Liying. The convergence properties of some new conjugate gradient methods[J]. Appl Math Comput, 2006(183):1341-1350.
[6] JIANG Xianzhen, JIAN Jinbao. Two modified nonlinear conjugate gradient methods with disturbance fators for unconstrained optimization[J]. Nonlinear Dyn, 2014, 77(1-2):387-394.
[7] HAGER W W, ZHANG Hongcao. A new conjugate gradient method with guaranteed descent and an efficient linear search[J]. SIAM J Optim, 2005, 16(1):170-192.
[8] YU Gaohang, GUAN Lutai, LI Guoyin. Global convergence of modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property[J]. J Ind Manag Optim, 2008, 4:565-579.
[9] 李敏, 陈宇, 屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. 山东大学学报(理学版), 2011,46(7):101-105,111. LI Min, CHEN Yu, QU Aiping. A sufficient descent DY conjugate gradient method and its global convergence[J]. Journal of Shandong University(Natural Science), 2011, 46(7):101-105, 111.
[10] TOUATI-AHMED D, STOREY C. Efficient hybrid conjugate gradient techniques[J]. J Optim Theory Appl, 1990, 64:379-397.
[11] 郑希锋,田志远,宋立温. Wolfe线搜索下一类混合共轭梯度法的全局收敛性[J].运筹学学报,2009,13(2):18-24. ZHENG Xifeng, TIAN Zhiyuan, SONG Liwen. The global convergence of a mixed conjugate gradient method with the Wolfe linear search[J]. OR Transactions, 2009, 13(2):18-24.
[12] 王开荣,高佩婷.建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6):16-23. WANG Kairong, GAO Peiting. Two mixed conjugate gradient methods based on DY[J]. Journal of Shandong University(Natural Science), 2016, 51(6):16-23.
[13] BIRGIN E G, MARTIMEZ J M. A spectral conjugate gradient method for unconstrained optimization[J]. Appl Math Optim, 2001, 43(2):117-128.
[14] ZHANG L, ZHOU W J, LI D H. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search[J]. Numer Math, 2006, 104:561-572.
[15] 林穗华,黄海. 一个新的谱共轭梯度法[J]. 工程数学学报, 2014, 31(6):837-846. LIN Suihua, HUANG Hai. A new spectral conjugate gradient method[J]. Chinese Journal of Engineering Mathematics, 2014, 31(6):837-846.
[16] MORÈ J J, GARBOW B S, HILLSTROME K E. Testing unconstrained optimization software[J]. ACM Trans Math Software, 1981, 7:17-41.
[1] ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101.
[2] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23.
[3] WANG Kai-rong, WANG Shu-min. The modified hybrid conjugates gradient methods with sufficient descent property [J]. J4, 2013, 48(09): 78-84.
[4] FENG Lin1,2, DUAN Fu-jian1, HE Wen-long1. A filter non-monotone trust region algorithm with a simple quadratic model [J]. J4, 2012, 47(5): 108-114.
[5] LI Min, CHEN Yu, QU Ai-ping. A sufficient descent DY conjugate gradient method and its global convergence [J]. J4, 2011, 46(7): 101-105.
[6] GAO Bao, SUN Qing-ying. Modified HS conjugate gradient method based on Zhang H C nonmonotone technique [J]. J4, 2011, 46(7): 106-111.
[7] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method [J]. J4, 2010, 45(6): 81-85.
[8] CHENG Li-qing. The global convergence of a class of conjugate gradient methods [J]. J4, 2010, 45(5): 101-105.
[9] WANG Kai-rong, CAO Wei, WANG Yin-he. A spectral CD conjugate gradient method with Armijo-type line search [J]. J4, 2010, 45(11): 104-108.
[10] . A new class of memory gradient methods with Wolfe line search [J]. J4, 2009, 44(7): 33-37.
[11] SUN Min . A modified super-memory gradient method with angle property [J]. J4, 2008, 43(6): 68-70 .
[12] LIU Li-ying,LI Ying , . Global convergence of a conjugate gradient method with strong Wolfe-Powell line search [J]. J4, 2008, 43(5): 54-57 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!