JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 65-69.doi: 10.6040/j.issn.1671-9352.0.2016.532

Previous Articles     Next Articles

A class of minimal inequalities for demimartingales

FENG De-cheng, ZHANG Xiao*, ZHOU Lin   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2016-11-18 Online:2017-08-20 Published:2017-08-03

Abstract: In the background of the demimartingale sequence {Sn, n≥1}, a class of minimal inequalities for the sequence {cnSn, n≥1} and {cng(Sn), n≥1} are given in this paper. These results generalize the corresponding results in recent papers.

Key words: demisubmartingale, demimartingale, minimal inequality

CLC Number: 

  • O211
[1] NEWMAN C M, WRIGHT A L. Associated random variables and martingale inequalities[J]. Zeitschrift für Wahrscheinlichkenstheorie und verwandte Gebiete, 1982, 59(3):361-371.
[2] CHRISTOFIDES T C. Maximal inequalities for demimartingales and a strong law of large numbers[J]. Statistics and Probability Letters, 2000, 50(4):357-363.
[3] CHRISTOFIDES T C. U-statistics on associated random variables[J]. Journal of Statistical Planning and Inference, 2004, 119(1):1-15.
[4] WANG Jianfeng. Maximal inequalities for associated random variables and demimartingales[J]. Statistics and Probability Letters, 2004, 66(3):347-354.
[5] HU Shuhe, WANG Xuejun, YANG Wenzhi, et al. The Hájek-Rényi-type inequality for associated random variables[J]. Statistics and Probability Letters, 2009, 79(7):884-888.
[6] WANG Xuejun, HU Shuhe. Maximal inequalities for demimartingales and their applications[J]. Science in China Series A: Mathematics, 2009, 52(10):2207-2217.
[7] WANG Xuejun, PRAKASA RAO B L S, HU Shuhe. On some maximal inequalities for demisubmartingales and N-demisupermartingales based on concave Young functions[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):434-440.
[8] PRAKASA RAO B L S. On some maximal inequalities for demisubmartingales and N-demisupermart-ingales[J]. Journal of Inequalities in Pure and Applied Mathematics, 2007, 8(4):112.
[9] PRAKASA RAO B L S. Remarks on maximal inequalities for nonnegative demisubmartingales[J]. Sta-tistics and Probability Letters, 2012, 82(7):1388-1390.
[10] PRAKASA RAO B L S. Conditional independence, conditional mixing and conditional association[J]. Annals of the Institute of Statistical Mathematics, 2009, 61(2):441-460.
[11] 胡舒合, 杨文志, 王学军,等. 关于N-弱鞅和弱鞅不等式的一个注记[J]. 系统科学与数学,2010,30(8):1052-1058. HU Shuhe, YANG Wenzhi, WANG Xuejun, et al. A note on the inequalities for N-demimartingales and demimartingales[J]. Journal of Systems Science and Mathematical Sciences, 2010, 30(8):1052-1058.
[12] CHRISTOFIDES T C. Maximal inequalities for N-demimartingales[J]. Archives of Inequalities and Applications, 2003, 1:387-398.
[13] WANG Xinghui, WANG Xuejun. Some inequalities for conditional demisubmartingales and conditional N-demisupermartingales[J]. Statistics and Probability Letters, 2013, 83(7):700-709.
[14] DAI Pingping, SHEN Yan, HU Shuhe, et al. Some results for demimartingales and N-demimartingales[J]. Journal of Inequalities and Applications, 2014(1):489-501.
[15] 冯德成, 蒋文君, 陈彩龙. 弱鞅的极小值不等式(英)[J]. 兰州文理学院学报:自然科学版,2015,29(2):1-4. FENG Decheng, JIANG Wenjun, CHEN Cailong. On minimal inequalities of demimartingales[J]. Jour-nal of Lanzhou University of Arts and Science: Natural Sciences, 2015, 29(2):1-4.
[1] FENG De-cheng, WANG Xiao-yan, GAO Yu-feng. Maximal φ-inequalities for conditional N-demimartingales based on Y functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 91-96.
[2] GONG Xiao-bing1,2. Whittle type inequality for demimartingales and its applications [J]. J4, 2011, 46(9): 112-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!