JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (3): 13-23.doi: 10.6040/j.issn.1671-9352.0.2017.064
Previous Articles Next Articles
YU Chuan-ming1, FENG Bo-lin1, TIAN Xin1, AN Lu2*
CLC Number:
[1] 余传明. 从产品评论中挖掘观点:原理与算法分析[J]. 情报理论与实践, 2009, 32(7):124-128. YU Chuanming. Mining opinions from product review: principles and algorithm analysis[J]. Information Studies: Theory & Application, 2009, 32(7):124-128. [2] 余传明, 安璐. 从小数据到大数据——观点检索面临的三个挑战[J]. 情报理论与实践, 2016, 39(2):13-19. YU Chuanming, AN Lu. From small data to big data——the three challenges of opinion retrieval[J]. Information Studies: Theory & Application, 2016, 39(2):13-19. [3] BLITZER J, DREDZE M, PEREIRA F. Domain adaptation for sentiment classification[EB/OL].[2017-02-16].http://www.cs.jhu.edu/~mdredze/publications/sentiment_acl07.pdf [4] PAN Jialin, YANG Qiang. A survey on transfer learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10):1345-1359. [5] PAN Weike, ZHONG Erheng, YANG qiang. Transfer learning for text mining[M] // Aggarwal C, Zhai C. Mining Text Data. Boston: Springer, 2012: 223-257. [6] RIGUTINI L, MAGGINI M, LIU Bing. An EM based training algorithm for cross-language text categorization[C] // Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Washington: IEEE Computer Society, 2005: 529-535. [7] WAN Xiaojun. Co-training for cross-lingual sentiment classification[C] // Processing of the AFNLP. Stroudsburg: Association for Computational Linguistics, 2009: 235-243. [8] DUH K, FUJINO A, NAGATA M. Is machine translation ripe for cross-lingual sentiment classification?[C] // Proceedings of Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2011: 429-433. [9] PRETTENHOFER P, STEIN B. Cross-lingual adaptation using structural correspondence learning[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 3(1):1-13. [10] FERNÁNDEZ A M, ESULI A, SEBASTIANI F. Distributional correspondence indexing for cross-lingual and cross-domain sentiment classification[J]. Journal of Articial Intelligence Research, 2015(55):131-163. [11] DUMAIS S T, LETSCHE T A, LITTMAN M L, et al. Automatic cross-language retrieval using latent semantic indexing[J]. AAAI Symposium on Crosslanguage Text & Speech Retrieval, 1997, 1:51-62. [12] DEERWESTER S. Indexing by latent semantic analysis[J]. Journal of the Association for Information Science and Technology, 1990, 41(6):391-407. [13] XIAO Min, GUO Yuhong. A novel two-step method for cross language representation learning[J]. Advances in Neural Information Processing Systems, 2013: 1259-1267. [14] VULIC I, SMET W D, TANG Jie, et al. Probabilistic topic modeling in multilingual settings: an overview of its methodology and applications[J]. Information Processing & Management, 2015, 51(1):111-147. [15] GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification: a deep learning approach[C] // Proceedings of the 28th International Conference on International Conference on Machine Learning. Bellevue: Omnipress, 2011: 513-520. [16] ZHOU Guangyou, ZHU Zhiyuan, HE Tingting, et al. Cross-lingual sentiment classification with stacked autoencoders[J]. Knowledge and Information Systems, 2016, 47(1):27-44. [17] ZHOU Guangyou, ZENG Zhao, HUANG Xiangji, et al. Transfer learning for cross-lingual sentiment classification with weakly shared deep neural networks[C] // Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 245-254. [18] KIM Y. Convolutional neural networks for sentence classification[EB/OL].[2017-01-02].arXiv:1408.5882. [19] KALCHBRENNER N, GREFENSTETTE E, BLUNSOMP. A convolutional neural network for modelling sentences[EB/OL].[2017-01-05]. arXiv: 1404.2188. [20] COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C] // Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008: 160-167. [21] GAO Jianfeng, PANTEL P, GAMON M, et al. Modeling interestingness with deep neural networks[C] // Proceedings of Annual Conference on Empirical Methods in Natural Language Processing.[S.l.] :[s.n.] ,2014:2-13. [22] YAN Chao, ZHANG Bailing, COENEN F. Driving posture recognition by convolutional neural networks[C] // Proceedings of the International Conference on Natural Computation. New York: IEEE, 2015: 680-685. [23] NGIAM J, KOH P, CHEN Zhenghao, et al. Sparse filtering[C] // Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada: Curran Associates Inc, 2011: 1125-1133. [24] DAHL G E, RANZATO M, MOHAMED A R, et al. Phone recognition with the mean-covariance restricted boltzmann machine[C] // Proceedings of the 23rd International Conference on Neural Information Processing Systems. Granada: Curran Associates Inc, 2010: 469-477. [25] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90. [26] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C] // Proceedings of Annual ACM Workshop on Computational Learning Theory. New York: ACM, 1996, 5:144-152. [27] TANG Yichuan. Deep learning using linear support vector machines[EB/OL].[2017-02-05]. arXiv:1306.0239v4. [28] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):2121-2159. [29] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9:249-256. [30] ZHOW Huiwei, CHEN Long, SHI Fulin, et al. Learning bilingual sentiment word embeddings for cross-language sentiment classification[C] // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing.[S.l.] :[s.n.] , 2015:430-441. [31] ZHOU Xinjie, WAN Xiaojun, XIAO Jianguo. Cross-lingual sentiment classification with bilingual document representation learning[C] // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.] :[s.n.] , 2016:1403-1412. [32] GIATSOGLOU M, VOZALIS M G, DIAMANTARAS K, et al. Sentiment analysis leveraging emotions and word embeddings[J]. Expert Systems with Applications, 2017, 69:214-224 [33] RUDER S, GHAFFARI P, BRESLIN J G. NSIGHT-1 at SemEval-2016 Task 5: deep learning for multilingual aspect-based sentiment analysis[C] // International Workshop on Semantic Evaluation.[S.l.] :[s.n.] , 2016: 330-336. [34] CHEN Xilun, SUN Yu, ATHIWARATKUN B. Adversarial deep averaging networks for cross-lingual sentiment classification[EB/OL].[2016-12-08].arXiv: 1606.01614. |
[1] | CHEN Xin, XUE Yun, LU Xin, LI Wan-li, ZHAO Hong-ya, HU Xiao-hui. Text feature extraction method for sentiment analysis based on order-preserving submatrix and frequent sequential pattern mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 36-45. |
[2] | SUN Shi-chang, LIN Hong-fei, MENG Jia-na, LIU Hong-bo. Model selection with likelihood ratio for sequence transfer learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(6): 24-31. |
[3] | WANG Tong, MA Yan-zhou, YI Mian-zhu. Speech recognition of Russian short instructions based on DTW [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 29-36. |
[4] | HE Yan-xiang, LIU Jian-bo, SUN Song-tao, WEN Wei-dong. Product reviews sentiment classification in Micro-blog based on cascaded conditional random field [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 67-73. |
[5] | ZHU Zhu, LI Shou-shan, DAI Min, ZHOU Guo-dong. Opinion target extraction with active-learning and automatic annotation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(07): 38-44. |
[6] | ZHOU Wen, ZHANG Shu-qing, OUYANG Chun-ping, LIU Zhi-ming, YANG Xiao-hua. Topic sentiment analysis of Chinese news based on emotional dependency tuple [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 1-6. |
[7] | YANG Jia-neng, YANG Ai-min, ZHOU Yong-mei. Sentiment classification method of Chinese Micro-blog based on semantic analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 14-21. |
[8] | ZHU Xi, DONG Xi-shuang, GUAN Yi, LIU Zhi-guang. Sentiment analysis of Chinese Micro-blog based on semi-supervised learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 37-42. |
[9] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
[10] | SUN Song-tao, HE Yan-xiang, CAI Rui, LI Fei, HE Fei-yan. Comparative study of methods for Micro-blog sentiment evaluation tasks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 43-50. |
[11] | ZHANG Cheng-gong 1, 2, LIU Pei-yu1, 2*, ZHU Zhen-fang1,2, FANG Ming1,2. A sentiment analysis method based on a polarity lexicon [J]. J4, 2012, 47(3): 47-50. |
|