JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (11): 23-28.doi: 10.6040/j.issn.1671-9352.0.2017.093

Previous Articles     Next Articles

gOMP reconstruction algorithm based on generalized Jaccard coefficient for compressed sensing

ZHANG Xiao-dong1, DONG Wei-guang1,2*, TANG Min-an1, GUO Jun-feng3, LIANG Jin-ping4   

  1. 1. School of Electrical Engineering and Automation, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. Key Laboratory of Opto-Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    3. School of Mechanical and Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China;
    4. School of Astronautics, Northwestern Polytechnical University, Xian 710072, Shaanxi, China
  • Received:2017-03-12 Online:2017-11-20 Published:2017-11-17

Abstract: In order to solve the problem such as low reconstruction performance of the signal, we propose a generalized orthogonal matching pursuit(gOMP)reconstruction algorithm based on generalized Jaccard coefficient. The improved gOMP algorithm replaces matching criterion of inner product by similarity matching criterion of generalized Jaccard coefficient, and selects the most matching atom from projection matrix and residual signal. Experimental results show that the reconstruction success rate of proposed algorithm is much better than other algorithms, such as gOMP, OMP, StOMP and so on.

Key words: compressed sensing, generalized orthogonal matching pursuit, similarity matching criterion, reconstruction algorithm, generalized Jaccard coefficient

CLC Number: 

  • TP391
[1] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[2] TROPP J, GILBERT A.Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
[3] NEEDELL D, VERSHYNIN R.Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit[J]. Foundations of Computational Mathematics, 2009, 9(3):317-334.
[4] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2):1094-1121.
[5] DO T T, GAN L, NGUYEN N, et al. Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C] //Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, California. New York: IEEE, 2008: 581-587.
[6] WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-621.
[7] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 2008, 346(9):589-592.
[8] CANDES E J, ROMBERG J. Sparsity and incoherence in compressive sampling[J].Inverse Problems, 2007, 23(3):969-985.
[9] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52(2):489-509.
[10] BARANIUK R, DAVENPORT M, DEVORE R A, et al. A simple proof of the restricted isometry property for random matrices[J]. Constructive Approximation, 2008, 28(3):253-263.
[11] 方红,杨海蓉.贪婪算法与压缩感知理论[J].自动化学报,2011,37(12): 1413-1421. FANG Hong, YANG Hairong. Greedy algorithms and compressed sensing[J]. Acta Automatica Sinica, 2011, 37(12):1413-1421.
[12] 裴文炯, 李少东, 杨军. 压缩感知中四种贪婪类算法重构信号性能研究[J]. 空军雷达学院学报,2012,26(5):313-317. PEI Wenjiong, LI Shaodong, YANG Jun. Performance study of signal reconstruction with four greedy algorithms in CS[J].Journal of Air Force Radar Academy, 2012, 26(5):313-317.
[13] 张宇,刘雨东,计钊.向量相似度测度方法[J].声学技术, 2009, 28(4): 532-536. ZHANG Yu, LIU Yudong, JI Zhao. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4): 532-536.
[14] 桑乐园, 徐新峰, 张婧, 等. 基于广义Jaccard系数的微博情感新词判定[J].山东大学学报(理学版), 2015, 50(7):71-75, 79. SANG Leyuan, XU Xinfeng, ZHANG Jing, et al. New Microblog sentiment lexicon judgment based on generalized Jaccard coefficient [J]. Journal of Shandong University(Natural Science), 2015, 50(7):71-75, 79.
[1] LI Shuang-an, CHEN Feng-hua, ZHAO Yan-wei. The application of a supermemory gradient method for large-scale signal reconstruction problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 65-73.
[2] ZHANG Ben-hui, TANG Yuan-sheng, CHEN Wen-bing. Communication rate in the secret reconstruction phase [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!