JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 58-66.doi: 10.6040/j.issn.1671-9352.0.2017.094

Previous Articles     Next Articles

Pseudo Drazin inverse of 2×2 anti-triangular matrix in Banach algebras

SUN Xiao-qing, WANG Xin   

  1. School of Science, Xian University of Technology, Xian 710054, Shaanxi, China
  • Received:2017-03-16 Online:2017-12-20 Published:2017-12-22

Abstract: We give formulae for the pseudo Drazin inverse M of an 2×2 anti-triangular matrix M=(a db 0)under some conditions. Moreover, some particular cases of these results are also considered.

Key words: pseudo Drazin inverse, Drazin inverse, anti-triangular matrix, Banach algebra

CLC Number: 

  • O151.2
[1] WANG Zhou, CHEN Jianlong. Pseudo Drazin inverses in associative rings and Banach algebras[J]. Linear Algebra Application, 2012, 437(6):1332-1345.
[2] HARTE R E. Invertibility and singularity for bounded linear operators[M]. New York: Marcel Dekker, 1988.
[3] LAM T Y. A first course in noncommutative rings[M]. New York: Springer, 2001.
[4] CVETKOVI S. A note on the representation for the Drazin inverse of 2×2 block matrices[J]. Linear Algebra Application, 2007, 423(2):332-338.
[5] CVETKOVIC-ILIC D C. Additive Results for the Generalized Drazin Inverse in a Banach Algebra[J]. Journal of the Australian Mathematical Society, 2006, 73(1):115-126.
[6] 袁玩贵,孔祥智. 环上矩阵的加权Moore-Penrose逆[J]. 山东大学学报(理学版), 2011,46(12):56-65. YUAN Wangui, KONG Xiangzhi. Weighted Moore-Penrose Inverses of matrices over rings[J]. Journal of Shandong University(Natural Science), 2011, 46(12):56-65.
[7] 郭丽,邹红林,杜文明.两个矩阵之和的Drazin逆的表示[J]. 吉林大学学报(理学版),2016,54(5):1032-1035. GUO Li, ZOU Honglin, DU Wenming. The representation of Drazin inverse of the sum of two matrices[J]. Journal of Jilin University(Natural Science), 2016, 54(5):1032-1035.
[8] WEI Yimin, DENG Cunyang. A note on additive results for the Drazin inverse[J]. Linear Multilinear Algebra, 2011, 59(12):1319-1329.
[9] ZHANG Guifen, CHEN Jianlong. Additive property of Drazin invertibility of elements in a ring[J]. Linear Multilinear Algebra, 2012, 60(8):903-910.
[10] CAMPBELL S L, MEYER C D. Generalized inverse of linear transformations[M]. Pitman: London, 1979.
[11] CAMPBELL S L. The Drazin inverse and systems of second order linear differential equations[J]. Linear and Multilinear Algebra, 1983, 14(2): 195-198.
[12] BU Changjiang, SUN Lizhu, ZHOU Jiang, et al. Some results on the Drazin inverse of anti-triangular matrices[J]. Linear Multilinear Algebra,2013, 61(11): 1568-1576.
[13] DENG Chunyang, WEI Yimin. A note on the Drazin inverse of anti-triangular matrices[J]. Linear Algebra Application, 2009, 431(10):1910-1922.
[1] LI Jun, ZHANG Jian-hua, CHEN Lin. Dual module Jordan derivations and dual module generalized derivations of triangular Banach algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 76-80.
[2] XIE Tao, ZUO Ke-zheng. [J]. J4, 2013, 48(4): 95-103.
[3] JI Pei-sheng1, QI Wei-qing2, LIU Rong-rong1. On the Hyers-Ulam Stability of n-cocycles [J]. J4, 2013, 48(4): 1-4.
[4] ZHANG Miao1, LIU Xiao-ji1,2*. The representations of the Drazin inverse of differences of two elemen ts in Banach algebra [J]. J4, 2012, 47(4): 89-93.
[5] FAN Da-fu1,2, LI Chun-hong2. Some expressions of the generalized Drazin inverse of  the 2×2 block operators in Banach space [J]. J4, 2012, 47(12): 88-95.
[6] HU Chun-mei,LIU Xiao-ji*. A splitting for the W-weighted Drazin inverse of a linear operator on Banach space [J]. J4, 2010, 45(10): 24-26.
[7] WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators [J]. J4, 2008, 43(8): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!