JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 64-69.doi: 10.6040/j.issn.1671-9352.0.2017.178

Previous Articles     Next Articles

Existence of positive solutions for a class of nonlinear second-order Dirichlet problem

  

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-04-20 Online:2018-06-20 Published:2018-06-13

Abstract: The existence of positive solutions for a class of second-order Dirichlet problem{u″(t)+a(t)u(t)+f(t,u(t))=0, t∈(0,1),u(0)=u(1)=0is studied by using the fixed-point theorem in cones, where a∈C([0,1], [0,∞))and a(t)≢0 on any subinterval of(0,1), f∈C([0,1]×[0,∞), [0,∞)). The results generalize and improve the related results of the existingwork.

Key words: Green function, existence, positive solutions, Dirichlet problem

CLC Number: 

  • O175.8
[1] WANG Hanyan. On the existence of positive solutions for semilinear elliptic equations in the annulus[J]. Journal of Differential Equations, 1994, 109(1):1-7.
[2] LI Yongxiang. Positive solutions of second-order boundary value problems with sign-changing nonlinear terms[J]. Journal of Mathematical Analysis and Applications, 2003, 282(1):232-240.
[3] EFENDIEV B I. The Dirichlet problem for an ordinary continuous second-order differential equation[J]. Matematicheskie Zametki, 2018, 103(2):295-302.
[4] ZHAO Jin, WANG Yanchao. Nontrivial solutions of second-order singular Dirichlet systems[J]. Boundary Value Problems, 2017, 180(14):34-15.
[5] ALKHUTOV Y, BORSUK M. The Dirichlet problem in a cone for second-order elliptic quasi-linear equation with the p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2017, 449(2):1351-1367.
[6] GRITSANS A, SADYRBAEV F, YERMACHENKO I. Dirichlet boundary value problem for the second-order asymptotically linear system[J]. International Journal of Differential Equations, 2016, 35(5):1-12.
[7] WAN Haitao. The second-order expansion of solutions to a singular Dirichlet boundary value problem[J]. Journal of Mathematical Analysis and Applications, 2015, 427(1):140-170.
[8] DUMANYAN V Z. On the solvability of the Dirichlet problem for a second-order elliptic equation[J]. Doklady. Natsional'naya Akademiya Nauk Armenii, 2014, 114(4):295-308.
[9] 徐登州, 马如云. 线性微分方程的非线性扰动[M]. 北京: 科学出版社, 2008:214-218. XU Dengzhou, MA Ruyun. Nonlinear disturbance of linear differential equation[M]. Beijing: Science Press, 2008:214-218.
[10] 马如云. 非线性常微分方程非局部问题[M]. 北京: 科学出版社, 2004:18-20. MA Ruyun. Nonlocal problem of nonlinear ordinary differential equation[M]. Beijing: Science Press, 2004:18-20.
[1] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[2] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[3] YE Fu-mei. Existence results of a resonance problem with derivative terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 25-31.
[4] ZHEN Wei-wei, ZENG Jian, REN Jian-long. Time dependent parabolic inverse source problem based on variational theory [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 61-71.
[5] LI Tao-tao. Existence of radial positive solutions of second-order semi-positone elliptic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 48-55.
[6] ZHANG Sha, JIA Mei, LI Yan, LI Xiao-chen. Existence and uniqueness of solutions for three point boundary value problems of impulsive fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 66-72.
[7] . Periodic solutions for second order singular damped differential equations with a weak singularity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 84-88.
[8] CHEN Bin. Third-order periodic boundary value problems with sign-changing Greens function [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 79-83.
[9] SU Yan. Existence of solutions for second-order discrete Neumann problems at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 37-41.
[10] CHEN Bin, Abuelgasimalshaby Elzebir. Existence and multiplicity results for a second-order multi-point boundary value problem at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 49-52.
[11] CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 127-134.
[12] GUO Li-jun. Existence of positive solutions for a third-order three-point boundary value problem of nonlinear differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 47-53.
[13] ZHU Wen-wen. Existence and multiplicity of positive solutions of first order periodic boundary value problems with parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 36-41.
[14] WANG Xian-fei, JIANG Long, MA Jiao-jiao. Multidimensional backward doubly stochastic differential equations with generators of Osgood type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 24-33.
[15] LU Sheng-rong, TANG Ji-hua. Dynamic generation of stretching-shrinking data and data submerging and hiding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!