JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (11): 1-10.doi: 10.6040/j.issn.1671-9352.0.2017.193

    Next Articles

Individual strength-based multi-objective immune algorithm with adaptive differential evolution

SHI Pei-yun, GAO Xing-bao*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2017-04-21 Online:2017-11-20 Published:2017-11-17

Abstract: Considering that some information contained in the dominant solution may be helpful to search for the optimal solution, some nondominated solutions and dominated solutions are selected in the clone phase to enhance the diversity of population and avoid the premature. In the evolutionary phase, crossover and mutation are excuted by an adaptive differential evolution operator and population is perturbed by the polynomial mutation operator to balance effectively global and local search of the algorithm. An archive is built based on individual strength to store a number of good solutions which are evolved and updated at each iteration. The proposed algorithm is compared with five existing evolutionary algorithms on ten standard benchmark functions. Experimental results show that the proposed algorithm has superiority in convergence and distribution.

Key words: multi-objective optimization, immune algorithm, individual strength, differential evolution

CLC Number: 

  • TP301
[1] DEB K, Multiobjective optimization using evolutionary algorithms[M]. New York: Wiley, 2001.
[2] 王宇平. 进化计算的理论与方法[M]. 北京: 科学出版社, 2010. WANG Yuping. Theory and method of evolutionary computation[M]. Beijing: Science Press, 2010.
[3] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[4] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization[M]. Berlin: Springer-Verlag, 2002: 95-100.
[5] ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[6] 谢承望, 李凯, 廖国勇. 一种带差分局部搜索的改进型NAGA2算法[J]. 计算机科学, 2013, 40(10): 235-273. XIE Chengwang, LI Kai, LIAO Guoyong. An improved NSGA2 with differential local search[J]. Computer Science, 2013, 40(10):235-273.
[7] 翁理国, 王安, 夏旻,等. 基于局部搜索的改进SPEA2算法[J]. 计算机应用研究, 2014, 31(9):2617-2639. WENG Liguo, WANG An, XIA Min, et al. An improved SPEA2 based on local search[J]. Application Research of Computers, 2014, 31(9):2617-2639.
[8] 谭艳艳. 几种改进的分解类多目标进化算法及其应用[D]. 西安: 西安电子科技大学, 2013. TAN Yanyan. Several improved multi-objective evolutionary algorithms based on decomposition and its application[D]. Xian: Xidian University, 2013.
[9] DE CASTRO L N, TIMMIS J. Artificial immune systems: a new computational intelligence approach[M]. London: Springer, 2002.
[10] GONG Maoguo, JIAO Licheng, DU Haifeng, et al. Multi-objective immune algorithm with nondominated neighbor-based selection[J]. IEEE Transactions on Evolutionary Computation, 2008, 16(2):225-255.
[11] LIN Qiuzhen, ZHU Qingling, HUANG Peizhi, et al. A novel hybrid multi-objective immune algorithm with adaptive differential evolution[J]. Computers & Operations Research, 2015, 62:95-111.
[12] LIN Qiuzhen, CHEN Jianyong, ZHAN Zhihui, et al. A hybrid evolutionary immune algorithm for multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5):711-729.
[13] YOO J, HAJELA P. Immune network simulations in multicriterion design[J]. Structural and Multidisciplinary Optimization, 1999, 18(2-3):85-94.
[14] BOSMAN P A N, THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2):174-188.
[15] 张岭军.基于多目标免疫算法的动态网络社区测试[D].西安:西安电子科技大学, 2012. ZHANG Lingjun. Dynamic network community test based on multi-objective immune algorithm[D]. Xian: Xidian University, 2012.
[16] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):398-417.
[17] Bilal Alatas. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications, 2010, 37(8):5682-5687.
[18] SABAT S L, KUMAR K S, UDGATA S K. Differential evolution and swarm intelligence techniques for analog circuit synthesis[C] // Proceedings of 2009 World Congress on Nature & Biologically Inspired Computing. New York: IEEE, 2009: 469-474.
[19] 王安. SPEA2算法改进在机器人路径规划中的应用[D]. 南京: 南京信息工程大学, 2014. WANG An. Application of SPEA2 algorithm in robot path planning[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
[20] ZITZLER E, DEB K, THIELE L. Comparison of multiobjective evolutionary algorithms: empirical results[J]. Evolutionary Computation, 2000, 8(2):173-195.
[21] DEB K, THIELE L, LAUMANNS M, et al. Scalable multi-objective optimization test problems[C] // Proceedings of the World on Congress on Computational Intelligence, 2002: 825-830.
[22] YANG Dongdong, JIAO Licheng, GONG Maoguo. Adaptive multi-objective optimization based on nondominated solutions[J]. Computational Intelligence, 2009, 25(2):84-108.
[23] LI Hui, ZHANG Qingfu. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2):284-302.
[1] WU Di, LI Su-jian, LI Hai-tao. Time satisfaction based inventory and distribution strategies for  the click-and-brick enterprise [J]. J4, 2013, 48(6): 51-60.
[2] L Xiao-ni 1, WANG Yan-cai 2, GAO Yue-lin 2. The maximum of earnings per risk portfolio model with restricted short selling under BVaR [J]. J4, 2013, 48(05): 92-96.
[3] YU Yong-sheng, GONG Zhao-hua, LIU Chong-yang. Optimal control problem in the microbial fed-batch fermentation process [J]. J4, 2011, 46(11): 117-121.
[4] LI Bin1,2, LI Yi-bin1, RONG Xue-wen1. Intelligent optimization strategy for ELM-RBF neural networks [J]. J4, 2010, 45(5): 48-51.
[5] ZHENG Xiang-Wei,LIU Hong . A diversity-guided two stages multi-objective particle swarm optimizer [J]. J4, 2008, 43(11): 5-10 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!