JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 32-35.doi: 10.6040/j.issn.1671-9352.0.2017.202
Previous Articles Next Articles
LU Dao-wei, WANG Zhen
CLC Number:
[1] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces[J]. Pacific Journal of Mathematics, 2003, 230:41-58. [2] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae for three-dimensional solvable Lie groups[C] // Quantum Field Theory and Noncommutative Geometry: Lecture Notes in Phys, Vol 662. Berlin: Springer, 2005: 127-141. [3] BONNEAU P, GERSTENHABER M, GIAQUINTO A, et al. Quantum groups and deformation quantization: explicit approaches and implicit aspects[J]. J Math Phys, 2004, 45:3703-3741. [4] BONNEAU P, STERNHEIMER D. Topological Hopf algebras, quantum groups and deformation quantization[C] // Hopf Algebras in Noncommutative Geometry and Physics: Lecture Notes in Pure and Appl Math, Vol 239. New York: Marcel Dekker, 2005: 55-70. [5] PANAITE F, VAN OYSTAEYEN F. L-R smash product for(quasi-)Hopf algebras[J]. J Algebra, 2007, 309:168-191. [6] LU J H. Hopf algebroids and quantum groupoids[J]. Internat J Math, 1996, 7:47-70. [7] CHEN Q, WANG D. A duality theorem for L-R crossed product[J]. Filomat, 2016, 30: 1305-1313. [8] KADISONA L, SZLACHANYI K. Bialgebroid actions on depth two extensions and duality[J]. Adv Math, 2003, 179:75-121. |
[1] | ZHOU Nan, ZHANG Tao, LU Dao-wei. L-R-smash products over monoidal Hom-bialgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 5-8. |
|