L-R smash product for bialgebroids

LU Dao-wei, WANG Zhen

1. Department of Mathematics, Jining University, Qufu 273155, Shandong, China
• Received:2017-05-08 Online:2017-12-20 Published:2017-12-22

Abstract: The L-R smash product for the bialgebroid is constructed, and examples are given. As an application, it is proved that two-sided smash product is actually an L-R smash product.

CLC Number:

• O153.3
 [1] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces[J]. Pacific Journal of Mathematics, 2003, 230:41-58.[2] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae for three-dimensional solvable Lie groups[C] // Quantum Field Theory and Noncommutative Geometry: Lecture Notes in Phys, Vol 662. Berlin: Springer, 2005: 127-141.[3] BONNEAU P, GERSTENHABER M, GIAQUINTO A, et al. Quantum groups and deformation quantization: explicit approaches and implicit aspects[J]. J Math Phys, 2004, 45:3703-3741.[4] BONNEAU P, STERNHEIMER D. Topological Hopf algebras, quantum groups and deformation quantization[C] // Hopf Algebras in Noncommutative Geometry and Physics: Lecture Notes in Pure and Appl Math, Vol 239. New York: Marcel Dekker, 2005: 55-70.[5] PANAITE F, VAN OYSTAEYEN F. L-R smash product for(quasi-)Hopf algebras[J]. J Algebra, 2007, 309:168-191.[6] LU J H. Hopf algebroids and quantum groupoids[J]. Internat J Math, 1996, 7:47-70.[7] CHEN Q, WANG D. A duality theorem for L-R crossed product[J]. Filomat, 2016, 30: 1305-1313.[8] KADISONA L, SZLACHANYI K. Bialgebroid actions on depth two extensions and duality[J]. Adv Math, 2003, 179:75-121.
 [1] ZHOU Nan, ZHANG Tao, LU Dao-wei. L-R-smash products over monoidal Hom-bialgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 5-8.
Viewed
Full text

Abstract

Cited

Shared
Discussed