JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (10): 27-34.doi: 10.6040/j.issn.1671-9352.0.2017.218
Previous Articles Next Articles
LI Mei-lian1, DENG Qing-ying2
CLC Number:
[1] | JAEGER F. On transition polynomials of 4-regular graphs[M]. Berlin: Springer Netherlands, 1990:123-150. |
[2] | TUTTE W T. A ring in graph theory[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1947, 43(1):26-40. |
[3] | KAUFFMAN L H. New invariants in the theory of knots[J]. Mathematical Association of America, 1988, 95(3):195-242. |
[4] | ITIK M, BANKS S P. On the calculation of the Kauffman bracket polynomial[J]. Applied Mathematics & Computation, 2010, 216(2):655-661. |
[5] | 李美莲,邓青英.虚拟链环的Kauffman尖括号多项式的Maple计算[J].厦门大学学报(自然科学版),2015,54(2):233-237. LI Meilian, DENG Qingying. The Maple calculation of the Kauffman bracket polynomial of virtual link[J]. Journal of Xiamen University(Natural Science), 2015, 54(2):233-237. |
[1] | WANG Ran-qun, ZUO Lian-cui. The linear 2-arboricity of plane graphs without 4-cycles and 5-cycles [J]. J4, 2012, 47(6): 71-75. |
[2] | ZHU Xiao-ying,XU Yang,SHI Hong-jun . The 3-choosability of plane graphs without3-, 6-,9- and 10-cycles [J]. J4, 2007, 42(10): 59-62 . |
|