JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 42-47.doi: 10.6040/j.issn.1671-9352.0.2017.255

Previous Articles     Next Articles

Nonlinear Jordan derivable maps on triangular algebras by Lie product square zero elements

WU Li, ZHANG Jian-hua*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2017-05-22 Online:2017-12-20 Published:2017-12-22

Abstract: Let U=Tri(A, M, B )be a 2-torsion free triangular algebra, and Q={u∈U:u2=0}. We prove that if a map φ:U→U satisfies φ(ab)=φ(a)b+aφ(b)for any a,b∈U with [a,b]∈Q, then φ is an additive derivation, where [a,b]=ab-ba is the Lie product and ab=ab+ba is the Jordan product.

Key words: square zero element, triangular algebra, Jordan derivable map

CLC Number: 

  • O177.1
[1] ZHANG Jianhua, YU Weiyan. Jordan derivations of triangular algebras[J]. Linear Algebra Appl, 2006, 419(1):251-255.
[2] 刘丹,张建华. 三角代数上的交换零点Jordan可导映射[J]. 数学学报, 2014, 57(6):1203-1208. LIU Dan, ZHANG Jiahua. Jordan derivable maps on triangular algebras by commutative zero products[J]. Acta Math Sinica, 2014, 57(6):1203-1208.
[3] 安润玲,侯晋川.含幂等元的环上的Jordan导子的刻画—在零点Jordan可导的可加映射[J].数学年刊,2010,31(4):463-474. AN Runling, HOU Jinchuan. Characterizations of Jordan derivations on rings with idempotents: additive maps Jordan derivable at zero[J]. Chinese Journal of Contemporary Mathematics, 2010, 31(4):463-474.
[4] AN Runling, HOU Jinchuan. Characterizations of derivations on triangular rings: additive maps derivable at idempotents[J]. Linear Algebra Appl, 2009, 431(5-7):1070-1080.
[5] LU Fangyan. Jordan derivable maps of prime rings[J]. Comm Algebra, 2010, 38:4430-4440.
[6] WONG Dein, MA Xiaobin, CHEN Li. Nonlinear mappings on upper triangular matrices derivable at zero point[J]. Linear Algebra Appl, 2015, 483:236-248.
[7] WANG Long. Nonlinear mappings on full matrices derivable at zero point[J]. Linear and Multilinear Algebra, 2016, 127:1563-1571.
[8] JI Peisheng, LIU Rongrong, ZHAO Yingzi. Nonlinear Lie triple derivations of triangular algebras[J]. Linear and Multilinear Algebra, 2012, 60:1155-1164.
[9] JI Peisheng, QI Weiqing. Characterizations of Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2011, 435(5):1137-1146.
[10] QI Xiaofei, CUI Jianlian, HOU Jinchuan. Characterizing additive ξ-Lie derivations of prime algebras by ξ-Lie zero products[J]. Linear Algebra Appl, 2011, 434(3):669-682.
[11] YU Weiyan, ZHANG Jianhua. Nonlinear *-Lie derivations on factor von Neumann algebras[J]. Linear Algebra Appl, 2012, 437(8):1979-1991.
[12] YU Weiyan, ZHANG Jianhua. Nonlinear Lie derivations of triangular algebras[J]. Linear Algebra Appl, 2010, 432(11):2953-2960.
[13] ZHAO Jinping, ZHU Jun. Jordan higher all-derivable points in triangular algerbras[J]. Linear Algebra Appl, 2012, 436(9):3072-3086.
[14] JONDRUP S. Automorphisms and derivation of upper triangular matrix rings[J]. Linear Algebra Appl, 1995, 221:205-218.
[15] Sǒnia P Coelho, Césa Polcino Milies. Derivations of upper triangular matrix rings[J]. Linear and Multilinear Algebra, 1993, 187:263-267.
[1] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points [J]. J4, 2013, 48(4): 5-9.
[2] CAO Zong-xia, ZHANG Jian-hua. Additive Jordan derivable maps of certain rings [J]. J4, 2012, 47(4): 5-10.
[3] JI Pei-sheng,QI Wei-qing,LIU Zhong-yan . Jordan ideals in triangular algebras of type II1 hyper-finite factors [J]. J4, 2008, 43(4): 6-08 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!