JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (7): 1-12.doi: 10.6040/j.issn.1671-9352.0.2017.279

    Next Articles

Granular computing approach for formal concept analysis and its research outlooks

LI Jin-hai1,2, WU Wei-zhi3,4   

  1. 1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    3. School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
    4. Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • Received:2017-06-05 Online:2017-07-20 Published:2017-07-07

Abstract: Formal concept analysis is a useful mathematical method for knowledge representation and processing and its key tool is concept lattice. However, the construction of concept lattice takes exponential time complexity, which to some extent makes data processing inefficient and hinders fast development of this theory and its application. Granular computing is well-known for formation of granule, transformation of granule, and synthesis and decomposition of granule. Granular computing allows to consider problem by granularity in various levels, and strikes a balance between accuracy and time consuming in solving problem based on the practical requirements. The main research aim of granular computing approach for formal concept analysis is to incorporate these advantages of granular computing into traditional formal concept analysis for efficiently solving data analysis and processing. More specifically, this paper shows the main research topics of granular computing approach for formal concept analysis from the perspectives of Galois connection based granular computing model, object granule, attribute granule, relation granule, relation-based concept 山 东 大 学 学 报 (理 学 版)第52卷 - 第7期李金海,等:形式概念分析的粒计算方法及其研究展望 \=-granularity, granular rule, granular reduct, granular concept and learning, and concept granular computing systems. In addition, some challenging problems are also proposed for dealing with big data and cognitive learning. The obtained results will provide some references for the further study of granular computing approach of formal concept analysis.

Key words: formal concept analysis, concept lattice, cognitive learning, big data, granular computing

CLC Number: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]. Ordered Sets, 1982: 445-470.
[2] GANTER B, WILLE R. Formal Concept Analysis: Mathematical Foundations[M]. New York: Springer, 1999.
[3] KUZNETSOV S O. Mathematical aspects of concept analysis[J]. Journal of Mathematical Science, 1996, 80(2): 1654-1698.
[4] GANTER B. Attribute exploration with background knowledge[J]. Theoretical Computer Science, 1999, 217(2): 215-233.
[5] GODIN R. Incremental concept formation algorithm based on Galois(concept)lattice[J]. Computational Intelligence, 1995, 11: 246-267.
[6] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2-3): 189-216.
[7] BURUSCO A, FUENTES-GONZALEZ R. The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 3: 209-218.
[8] LEHMANN F, WILLE R. A triadic approach to formal concept analysis[C] //Proceedings of the Third International Conference on Conceptual Structures, 1995, 954: 32-43.
[9] CARPINETO C, ROMANO G. A lattice conceptual clustering system and its application to browsing retrieval[J]. Machine Learning, 1996, 10: 95-122.
[10] STUMME G, WILLE R, WILLE U. Conceptual knowledge discovery in databases using formal concept analysis methods[J]. Lecture Notes in Artificial Intelligence, 1998, 1510: 450-458.
[11] 胡可云, 陆玉昌, 石纯一. 概念格及其应用进展[J]. 清华大学学报(自然科学版), 2000, 40(9): 77-81. HU Keyun, LU Yuchang, SHI Chunyi. Advances in concept lattice and its application[J]. Journal of Tsinghua University(Science & Technology), 2000, 40(9): 77-81.
[12] 刘宗田, 强宇, 周文, 等.一种模糊概念格模型及其渐进式构造算法[J]. 计算机学报, 2007, 30(2): 184-188. LIU Zongtian, QIANG Yu, ZHOU Wen, et al. A fuzzy concept lattice model and its incremental construction algorithm[J]. Chinese Journal of Computers, 2007, 30(2): 184-188.
[13] 智慧来,智东杰,刘宗田. 概念格合并原理与算法[J]. 电子学报, 2010, 38(2): 455-459. ZHI Huilai, ZHI Dongjie, LIU Zongtian. Theory and algorithm of concept lattice union[J]. Acta Electronica Sinica, 2010, 38(2): 455-459.
[14] KRAJCA P, OUTRATA J, VYCHODIL V. Parallel algorithm for computing fixpoints of Galois connections[J]. Annals of Mathematics and Artificial Intelligence, 2010, 59(2): 257-272.
[15] 张卓, 杜鹃, 王黎明.基于负载均衡的模糊概念并行构造算法[J]. 控制与决策, 2014, 29(11): 1935-1942. ZHANG Zhuo, DU Juan, WANG Liming. Load balance-based algorithm for parallelly generating fuzzy formal concepts[J]. Control and Decision, 2014, 29(11): 1935-1942.
[16] ZOU Ligeng, ZHANG Zuping, LONG Jun. A fast incremental algorithm for constructing concept lattices[J]. Expert Systems with Applications, 2015, 42(9): 4474-4481.
[17] ZADEH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2): 111-127.
[18] YAO Yiyu. A partition model of granular computing[J]. Lecture Notes in Computer Science, 2004, 3100: 232-253.
[19] 苗夺谦,王国胤,刘清,等. 粒计算: 过去、现在与展望[M]. 北京: 科学出版社, 2007. MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular computing: past, present and future[M]. Beijing: Science Press, 2007.
[20] KANG Xiangping, LI Deyu, WANG Suge, et al. Formal concept analysis based on fuzzy granularity base for different granulations[J]. Fuzzy Sets and Systems, 2012, 203: 33-48.
[21] GUO Lankun, Huang Fangping, LI Qingguo, et al. Power contexts and their concept lattices[J]. Discrete Mathematics, 2011, 311: 2049-2063.
[22] ASWANI KUMAR C, ISHWARYA M S, LOO C K. Formal concept analysis approach to cognitive functionalities of bidirectional associative memory[J]. Biologically Inspired Cognitive Architectures, 2015, 12: 20-33.
[23] MA Jianmin, ZHANG Wenxiu, LEUNG Yee, et al. Granular computing and dual Galois connection[J]. Information Sciences, 2007, 177(23): 5365-5377.
[24] DIAS S M, VIEIRA N J. Reducing the size of concept lattices: the JBOS approach[C] // Proceedings of the Seventh International Conference on Concept Lattices and their Applications, 2010: 60-69.
[25] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[J]. Lecture Notes in Computer Science, 2014, 8818: 732-741.
[26] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378: 244-263.
[27] HU Baoqing. Three-way decisions space and three-way decisions[J]. Information Sciences, 2014, 281: 21-52.
[28] ZHANG Qinghua, XING Yuke. Formal concept analysis based on granular computing[J]. Journal of Computational Information Systems, 2010, 6(7): 2287-2296.
[29] BELOHLAVEK R, DE BAETS B, KONECNY J. Granularity of attributes in formal concept analysis[J]. Information Sciences, 2014, 260: 149-170.
[30] ASWANI KUMAR C, SRINIVAS S. Concept lattice reduction using fuzzy K-means clustering[J]. Expert Systems with Applications, 2010, 37(3): 2696-2704.
[31] DEOGUN J S, SAQUER J. Monotone concepts for formal concept analysis[J]. Discrete Applied Mathematics, 2004, 144(1-2): 70-78.
[32] WANG Lidong, LIU Xiaodong. Concept analysis via rough set and AFS algebra[J]. Information Sciences, 2008, 178(21): 4125-4137.
[33] KANG Xiangping, MIAO Duoqian. A variable precision rough set model based on the granularity of tolerance relation[J]. Knowledge-Based Systems, 2016, 102: 103-115.
[34] ELLOUMI S. A multi-level conceptual data reduction approach based on the Łukasiewicz implication[J]. Information Sciences, 2004, 163(4): 253-262.
[35] LI Lifeng, ZHANG Jianke. Attribute reduction in fuzzy concept lattices based on the T implication[J]. Knowledge-Based Systems, 2010, 23(6): 497-503.
[36] MA Yuan, LIU Zhangang, ZHANG Xuedong. Granular computing in formal concept[C] // Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, 2010: 370-407.
[37] 马垣, 曾子维, 迟呈英, 等. 形式概念及其新进展[M]. 北京: 科学出版社, 2011. MA Yuan, ZENG Ziwei, CHI Chengying, et al. Formal concept and its new progress[M]. Beijing: Science Press, 2011.
[38] WANG Lidong, LIU Xiaodong. A new model of evaluating concept similarity[J]. Knowledge-Based Systems, 2008, 21: 842-846.
[39] WU Weizhi, LEUNG Yee, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[40] QU Kaishe, ZHAI Yanhui, LIANG Jiye, et al. Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36(2): 147-156.
[41] 张文修, 仇国芳. 基于粗糙集的不确定决策[M]. 北京:清华大学出版社,2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing: Tsinghua University Press, 2005.
[42] LI Jinhai, MEI Changlin, LV Yuejin. Knowledge reduction in decision formal contexts[J]. Knowledge-Based Systems, 2011, 24(5): 709-715.
[43] LI Jinhai, MEI Changlin, ASWANI KUMAR C, et al. On rule acquisition in decision formal contexts[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(6): 721-731.
[44] 翟岩慧,李德玉,曲开社. 决策蕴涵规范基[J]. 电子学报, 2015, 43(1): 18-23. ZHAI Yanhui, LI Deyu, QU Kaishe. Canonical basis for decision implications[J]. Acta Electronica Sinica, 2015, 43(1): 18-23.
[45] 聂翠平, 米据生, 郑凤彩. 概念格的外延覆盖约简[J]. 工程数学学报, 2009, 26(1): 8-16. NIE Cuiping, MI Jusheng, ZHENG Fengcai. Covering reduction of extents in concept lattices[J]. Chinese Journal of Engineering Mathematics, 2009, 26(1): 8-16.
[46] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学(信息科学), 2005, 35(6): 628-639. ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science China(Information Sciences), 2005, 35(6): 628-639.
[47] SHAO Mingwen, LEUNG Yee, WANG Xizhao, et al. Granular reducts of formal fuzzy contexts[J]. Knowledge-Based Systems, 2016, 114: 156-166.
[48] HUANG Chenchen, LI Jinhai, DIAS S M. Attribute significance, consistency measure and attribute reduction in formal concept analysis[J]. Neural Network World, 2016, 17(6): 607-623.
[49] 魏玲, 祁建军, 张文修. 决策形式背景的概念格属性约简[J]. 中国科学(信息科学), 2008, 38(2): 195-208. WEI Ling, QI Jianjun, ZHANG Wenxiu. Attribute reduction theory of concept lattice based on decision formal contexts[J]. Science China(Information Sciences), 2008, 38(2): 195-208.
[50] WANG Hong, ZHANG Wenxiu. Approaches to knowledge reduction in generalized consistent decision formal context[J]. Mathematical and Computer Modelling, 2008, 48(11-12): 1677-1684.
[51] LI Jinhai, MEI Changlin, LV Yuejin. A heuristic knowledge-reduction method for decision formal contexts[J]. Computers and Mathematics with Applications, 2011, 61(4): 1096-1106.
[52] LI Jinhai, ASWANI KUMAR C, MEI Changlin, et al. Comparison of reduction in formal decision contexts[J]. International Journal of Approximate Reasoning, 2017, 80: 100-122.
[53] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298: 447-467.
[54] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
[55] WANG Ying. On concept algebra: A denotational mathematical structure for knowledge and sofrware modelling[J]. International Journal of Cognitive Informatics and Natural Intelligence, 2008, 2(2): 1-19.
[56] LAKE B M, SALAKHUTDINOV R, TENENBAUM J B. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350: 1332-1338.
[57] ANGLUIN D. Queries and concept learning[J]. Machine Learning,1988, 2: 319-342.
[58] 仇国芳, 马建敏, 杨宏志, 等. 概念粒计算系统的数学模型[J]. 中国科学(信息科学), 2009, 39(12): 1239-1247. QIU Guofang, MA Jianmin, YANG Hongzhi, et al. A mathematical model for concept granular computing systems[J]. Science China(Information Sciences), 2010, 53(7): 1397-1408.
[59] 张文修, 徐伟华. 基于粒计算的认知模型[J]. 工程数学学报, 2007, 24(6): 957-971. ZHANG Wenxiu, XU Weihua. Cognitive model based on granular computing[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 957-971.
[60] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 366-379.
[61] 张清华, 幸禹可, 王国胤. 概念知识粒与概念信息粒的相互转化[J]. 山东大学学报(理学版), 2010, 45(9): 1-6. ZHANG Qinghua, XING Yuke, WANG Guoyin. Transformation between a concept knowledge granule and a concept information granule[J]. Journal of Shandong University(Natural Science Edition), 2010, 45(9): 1-6.
[62] WANG Guoyin, Xu Changlin, LI Deyi. Generic normal cloud model[J]. Information Sciences, 2014, 280: 1-15.
[63] HUANG Chenchen, LI Jinhai, MEI Changlin, et al. Three-way concept learning based on cognitive operators: an information fusion viewpoint[J]. International Journal of Approximate Reasoning, 2017, 83: 218-242.
[64] WANG Ying, ZADEH L A, YAO Yiyu. On the system algebra foundations for granular computing[J]. International Journal of Software Science and Computational Intelligence, 2009, 1(1): 64-86.
[65] YAO Yiyu. Interpreting concept learning in cognitive informatics and granular computing[J]. IEEE Transactions on Systems, Man, and Cybernetics(Part B: Cybernetics), 2009, 39(4): 855-866.
[66] 李鸿. 基于粒集的概念粒系统[J]. 安徽大学学报(自然科学版), 2009, 33(6): 37-43. LI Hong. The concept granular system based on granular set[J]. Journal of Anhui University(Natural Science Edition), 2009, 33(6): 37-43.
[67] 张文修,魏玲,祁建军,等. 概念格约简泛化与概念粒逼近[C] // 苗夺谦, 王国胤, 刘清, 林早阳, 姚一豫. 粒计算:过去、现在与展望, 2007: 243-274. ZHANG Wenxiu, WEI Ling, QI Jianjun, et al. Concept lattice reduction generalization and concept granule approximation[C] // MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular Computing: Past, Present and Future, 2007: 243-274.
[68] 刘宗田. 概念格与粒计算[C] // 苗夺谦, 王国胤, 刘清, 等. 粒计算:过去、现在与展望, 2007: 275-298. LIU Zongtian. Concept lattice and granular computing[C] // MIAO Duoqian, WANG Guoyin, LIU Qing, et al. Granular Computing: Past, Present and Future, 2007: 275-298.
[69] 闫林,张新明,何健仓,等. 粗糙集、商空间及概念格中粒的统一描述[J]. 计算机工程与应用, 2010, 46(9): 38-41. YAN Lin, ZHANG Xinming, HE Jiancang, et al. Uniform description for granules appearing in rough set, quotient space and concept lattice[J]. Computer Engineering and Applications, 2010, 46(9): 38-41.
[70] POELMANS J, KUZNETSOV S O, IGNATOV D I, et al. Formal concept analysis in knowledge processing: a survey on models and techniques[J]. Expert Systems with Applications, 2013, 40(16): 6601-6623.
[71] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Formal concept analysis in knowledge processing: a survey on applications[J]. Expert Systems with Applications, 2013, 40(16): 6538-6560.
[72] SINGH P K, ASWANI KUMAR C, GANI A. A comprehensive survey on formal concept analysis, its research trends and applications[J]. International Journal of Applied Mathematics and Computer Science, 2016, 26(2): 495-516.
[73] YAO Yiyu. Concept lattices in rough set theory[C] // Proceedings of 2004 Annual Meeting of the North American Fuzzy Information Processing Society, USA: IEEE, 2004: 796-801.
[74] YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C] // Proceedings of 4th International Conference on Rough Sets and Current Trends in Computing, Berlin: Springer, 2004: 59-68.
[75] YAO Yiyu. Rough-set concept analysis: Interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346-347: 442-462.
[76] 张文修, 姚一豫, 梁怡. 粗糙集与概念格[M]. 西安: 西安交通大学出版社, 2006. ZHANG Wenxiu, YAO Yiyu, LEUNG Yee. Rough set and concept lattice[M]. Xian: Xian Jiaotong University Press, 2006.
[77] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining, USA: IEEE, 2002: 155-162.
[78] CHEN Jinkun, LI Jinjin, LIN Yaojin, et al. Relations of reduction between covering generalized rough sets and concept lattices[J]. Information Sciences, 2015, 304: 16-27.
[79] TAN Anhui, LI Jinjin, LIN Guoping. Connections between covering-based rough sets and concept lattices[J]. International Journal of Approximation Reasoning, 2015, 56: 43-58.
[80] WANG Xia, ZHANG Wenxiu. Relations of attribute reduction between object and property oriented concept lattice[J]. Knowledge-Based Systems, 2008, 21(5): 398-403.
[81] 仇国芳,张志霞,张炜.基于粗糙集方法的概念格理论研究综述[J]. 模糊系统与数学, 2014, 28(1): 168-177. QIU Guofang, ZHANG Zhixia, ZHANG Wei. A survey for study on concept lattice theory via rough set[J]. Fuzzy systems and Mathematics, 2014, 28(1): 168-177.
[82] 魏玲, 祁建军, 张文修. 概念格与粗糙集的关系研究[J]. 计算机科学, 2006, 33(3):18-21. WEI Ling, QI Jianjun, ZHANG Wenxiu. Study on relationships between concept lattice and rough set[J]. Computer Science, 2006, 33(3): 18-21.
[83] 王俊红, 梁吉业. 概念格与粗糙集[J]. 山西大学学报(自然科学版), 2003, 26(4): 307-310. WANG Junhong, LIANG Jiye. Concept lattice and rough set[J]. Journal of Shanxi University(Natural Science Edition), 2003, 26(4): 307-310.
[84] LIN T Y. Granular computing on binary relations I: Data mining and neighborhood systems[C] // Rough Sets in Knowledge Discovery, Berlin: Springer, 1998: 107-121.
[85] YAO Yiyu. Information granulation and rough set approximation[J]. International Journal of Intelligent Systems, 2001, 16: 87-104.
[86] 梁吉业, 钱宇华. 信息系统中的信息粒与熵理论[J].中国科学(信息科学), 2008, 38(12): 2048-2065. LIANG Jiye, QIAN Yuhua. Information granules and entropy theory in information systems[J]. Science China(Information Sciences), 2008, 38(12): 2048-2065.
[87] 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4): 676-694. WANG Guoyin, ZHANG Qinghua, MA Xiao, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4): 676-694.
[88] 苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2): 351-363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2): 351-363.
[89] ZHANG Xianyong, MIAO Duoqian. Three-layer granular structures and three-way informational measures of a decision table[J]. Information Sciences, 2017, 412-413: 67-86.
[90] 刘文奇. 中国公共数据库数据质量控制模型体系及实证[J].中国科学(信息科学), 2014, 44(7): 836-856. LIU Wenqi. Modeling data quality control system for Chinese public database and its empirical analysis[J]. Science China(Information Sciences), 2014, 44(7): 836-856.
[91] ZHI Huilai, LI Jinhai. Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104: 62-73.
[92] CHEN Hongmei, LI Tianrui, RUAN D, et al. A rough-set-based incremental approach for updating approximations under dynamic maintenance environments[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(2): 274-284.
[93] CHEN Hongmei, LI Tianrui, LUO Chuan, et al, A rough set-based method for updating decision rules on attribute values' coarsening and refining[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(12): 2886-2899.
[94] LUO Chuan, LI Tianrui, CHEN Hongmei. Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization[J]. Information Sciences, 2014, 257: 210-228.
[95] LIU Dun, LI Tianrui, ZHANG Junbo. Incremental updating approximations in probabilistic rough sets under the variation of attributes[J]. Knowledge-Based Systems, 2015, 73: 81-96.
[96] CHEN Degang, YANG Yanyan, DONG Ze. An incremental algorithm for attribute reduction with variable precision rough sets[J]. Applied Soft Computing, 2016, 45: 129-149.
[97] FORMICA A. Ontology-based concept similarity in formal concept analysis[J]. Information Sciences, 2006, 176: 2624-2641.
[98] LI Jinhai, REN Yue, MEI Changlin, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-Based Systems, 2016, 91: 152-164.
[99] LI Lifeng. Multi-level interval-valued fuzzy concept lattices and their attribute reduction[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 45-56.
[100] 郝晨, 范敏, 李金海, 等.多标记背景下基于粒标记规则的最优标记选择[J]. 模式识别与人工智能, 2016, 29(3): 272-280. HAO Chen, FAN Min, LI Jinhai, et al. Optimal scale selection in multi-scale contexts based on granular scale rules[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3): 272-280.
[101] WU Xindong, ZHU Xingquan, WU Gongqing, et al. Data mining with big data[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(1): 97-107.
[102] ANTONI Lubomir, KRAJCI Stanislav, KRIDLO Ondrej, et al. On heterogeneous formal contexts[J]. Fuzzy Sets and Systems, 2014, 234: 22-33.
[103] 智慧来. 面向异构数据分析的形式概念分析扩展模型[J]. 电子学报, 2013, 41(12): 2451-2455. ZHI Huilai. Extended model of formal concept analysis oriented for heterogeneous data analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2451-2455.
[104] 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J].中国科学(信息科学), 2015, 45(11): 1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Science China(Information Sciences), 2015, 45(11): 1355-1369.
[105] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8): 1497-1517. XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38(8): 1497-1517.
[106] 钱进, 苗夺谦, 张泽华. 云计算环境下知识约简算法[J]. 计算机学报, 2011, 34(12): 2332-2343. QIAN Jin, MIAO Duoqian, ZHANG Zehua. Knowledge reduction algorithms in cloud computing[J]. Chinese Journal of Computers, 2011, 34(12): 2332-2343.
[107] QIAN Yuhua, LIANG Jiye, PEDRYCZ W, et al. Positive approximation: an accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence, 2010, 174: 597-618.
[108] HU Qinghua, ZHANG David, AN Shuang, et al. On robust fuzzy rough set models[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(4): 636-651.
[109] LI Jinhai, HUANG Chenchen, XU Weihua, et al. Cognitive concept learning via granular computing for big data[C] // Proceedings of the 2015 International Conference on Machine Learning and Cybernetics, USA: IEEE, 2015: 289-294.
[110] 武秀波, 苗霖, 吴丽娟, 等.认知科学概论[M]. 北京: 科学出版社, 2007. WU Xiubo, MIAO Lin, WU Lijuan, et al. Introduction to cognitive science[M]. Beijing: Science Press, 2007.
[111] 吴伟志, 高仓健, 李同军. 序粒度标记结构及其粗糙近似[J]. 计算机研究与发展, 2014, 51(12): 2623-2632. WU Weizhi, GAO Cangjian, LI Tongjun. Ordered granular labeled structures and rough approximations[J]. Journal of Computer Research and Development, 2014, 51(12): 2623-2632.
[112] 代建华, 陈卫东, 潘云鹤. 基于粗糙集的综合推理模型[J]. 浙江大学学报(工学版), 2006, 40(9): 1526-1530. DAI Jianhua, CHEN Weidong, PAN Yunhe. Synthesis reasoning model based on rough set theory[J]. Journal of Zhejiang University(Engineering Science), 2006, 40(9): 1526-1530.
[113] SHE Yanhong, HE Xiaoli. On the structure of the multigranulation rough set model[J]. Knowledge-Based Systems, 2012, 36: 81-92.
[114] MIN Fin, HE Huaping, QIAN Yuhua, et al. Test-cost-sensitive attribute reduction[J]. Information Sciences, 2011, 181(22): 4928-4942.
[115] HUANG Bing, ZHUANG Yuliang, LI Huaxiong. Information granulation and uncertainty measures in interval-valued intuitionistic fuzzy information systems[J]. European Journal of Operational Research, 2013, 231(1): 162-170.
[116] LANG Guangming, MIAO Duoqian, YANG Tian, et al. Knowledge reduction of dynamic covering decision information systems when varying covering cardinalities[J]. Information Sciences, 2016, 346-347: 236-260.
[117] WANG Ying. On cognitive computing[J]. International Journal of Software Science and Computational Intelligence, 2009, 1(3):1-15.
[118] 张涛,任宏雷,洪文学,等. 基于属性拓扑的可视化形式概念计算[J]. 电子学报, 2014, 42(5): 925-932. ZHANG Tao, REN Honglei, HONG Wenxue, et al. The visualizing calculation of formal concept based on the attribute topologies[J]. Acta Electronica Sinica, 2014, 42(5): 925-932.
[119] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of Granular Computing[M]. USA: Wiley, 2008.
[120] YAO Jingtao, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1977-1989.
[121] KOFFKA K. Principles of gestalt psychology[M]. San Diego: Harcourt, 1967.
[122] KING D B, WERTHEIMER M. Max wertheimer and gestalt theory[M]. Piscataway: Transaction Publishers, 2004.
[123] 徐伟华, 李金海, 魏玲, 等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016. XU Weihua, LI Jinhai, WEI Ling, et al. Formal concept analysis: theory and application[M]. Beijing: Science Press, 2016.
[124] XU Weihua, LI Jinhai, SHAO Mingwen, ZHANG Wenxiu. Editorial[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(1): 1-2.
[1] YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12-22.
[2] ZHANG En-sheng. Composition and structure on attribute reduction of interval-set concept lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 17-24.
[3] LI Li, GUAN Tao, LIN He. The hybrid parallel rough set model based on pansystems operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 22-29.
[4] HUANG Tao-lin, NIU Jiao-jiao, LI Jin-hai. Reduct updating method in a dynamic formal context based on granular discernibility attribute matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 13-21.
[5] LIU Lin, WEI Ling, QIAN Ting. Three-way rules extraction in formal decision contexts with confidence [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 101-110.
[6] CHEN Xue, WEI Ling, QIAN Ting. Attribute reduction in formal decision contexts based on AE-concept lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 95-103.
[7] CHEN Qiang, DU Pan, CHEN Hai-qiang, BAO Xiu-guo, LIU Yue, CHENG Xue-qi. K-Canopy:a fast data segmentation algorithm for the topic detection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 106-112.
[8] HUANG Wei-ting, ZHAO Hong, ZHU William. Adaptive divide and conquer algorithm for cost-sensitive attribute reduction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 98-104.
[9] QIN Li-zhen, LI Jin-hai, WANG Yang-yang. Concept lattice based knowledge discovery and its application to analysis of employment data in universities [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 58-64.
[10] MA Yuan-yuan, MENG Hui-li, XU Jiu-cheng, ZHU Ma. Normal distribution of lattice close-degree based on granular computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 107-110.
[11] ZHANG Chun-ying, WANG Li-ya, LIU Bao-xiang. Dynamic reduction theory for interval concept lattice based on covering and its realization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 15-21.
[12] AN Qiu-sheng, KONG Xiang-yu. New research of functional dependency and multi-valued dependency [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 1-5.
[13] TANG Ya-qiang, FAN Min, LI Jin-hai. Cognitive system model and approach to transformation of information granules under triadic formal concept analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 102-106.
[14] YANG Wei-ping1, LIN Meng-lei2. Information granularity in intuitionistic fuzzy information systems [J]. J4, 2012, 47(1): 87-92.
[15] ZHANG Qing-hua1,2, XING Yu-ke2, WANG Guo-yin2. Transformation between concept knowledge granule and concept information granule [J]. J4, 2010, 45(9): 1-6.
Full text



No Suggested Reading articles found!