JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (8): 61-65.doi: 10.6040/j.issn.1671-9352.0.2017.280

Previous Articles     Next Articles

Order of matching energy and Hosoya index of Q-shape graphs

LIU Xiao-hua, MA Hai-cheng*   

  1. Department of Mathematics, Qinghai University for Nationalities, Xining 810007, Qinghai, China
  • Received:2017-05-31 Online:2018-08-20 Published:2018-07-11

Abstract: The Q(s,t)(s≥2t≥1)is the graph with s+t+1 vertices. A complete order of matching energy of the Q-shape graphs is given. As a consequence,the order of Hosoya index also be obtained.

Key words: Q-shape graph, matching polynomial, matching energy, Hosoya index

CLC Number: 

  • O157.5
[1] GODSIL C D. Algebraic combinatorics[M]. London: Chapman and Hall, 1993.
[2] HEILMANN O J, LIEB E H. Theory of monomer-dimer systems[J]. Commun Math Physics, 1972, 25: 190-232.
[3] HOSOYA H. Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons[J]. Bull Chem Soc Jpn, 1971, 44: 2332-2339.
[4] GUTMANA I, WAGNER S. The matching energy of a graph[J]. Discrete Applied Mathematics, 2012, 160: 2177-2187.
[5] LI X L, SHI Y T, GUTMAN I. Graph energy[M]. Berlin: Springer, 2012.
[6] 李改扬. 几类图的匹配唯一性[J]. 应用数学, 1993, 5(3): 53-59. LI Gaiyang. The matching uniqueness of several graph families[J]. Mathematica Applicata, 1993, 5(3):53-59.
[1] ZHOU Xu-ran, WANG Li-gong*. Orderings of a class of bicyclic graphs with respect to two kinds of indices [J]. J4, 2011, 46(11): 44-47.
[2] YE Cheng-fu,YIN Jian . The extremal Hosoya index of the trees with a given diameter [J]. J4, 2008, 43(8): 14-18 .
Full text



No Suggested Reading articles found!