JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (10): 1-5.doi: 10.6040/j.issn.1671-9352.0.2017.506

    Next Articles

Semilattice-ordered completely regular periodic semigroups

SHAO Yong   

  1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
  • Received:2017-09-25 Online:2018-10-20 Published:2018-10-09

Abstract: It is proved that the multiplicative reducts of semilattice-ordered completely regular periodic semigroups are regular orthocryptogroups through the research of semilattice-ordered completely regular periodic semigroups. Semilattice-ordered completely regular periodic semigroups are equivalent characterizations of semilattice-ordered regular band and distributive lattices are obtained by using partial orders.

Key words: idempotent element, distributive lattice, semilattice-ordered completely regular periodic semigroup, partial order

CLC Number: 

  • O152.7
[1] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publication, 1995.
[2] PETRICH M, REILLY N R. Completely regular semigroups[M]. New York: John Wiley & Sons, 1999.
[3] GOULD M, ISKRA J A, TSINAKIS C. Globals of completely regular periodic semigroups[J]. Semigroup Forum, 1984, 29(1):365-374.
[4] MCALISTER D B. Amenable ordered inverse semigroup[J]. Journal of Algebra, 1980, 65(1):118-146.
[5] ROMANO D A. Semilattice-ordered semigroups with apartness representation problem[J]. Journal of Advanced Mathematical Studies, 2012, 5(2):13-19.
[6] GAJDOS P, KURIL M. On free semilattice-ordered semigroups satisfying xn=x[J]. Semigroup Forum, 2010, 80(1):92-104.
[7] KURIL M, POLAK L. On Varieties of semilattice-ordered semigroups[J]. Semigroup Forum, 2005, 71(1):27-48.
[8] GHOSH S, PASTIJN F, ZHAO X. Varieties generated by ordered bands I[J]. Order, 2005, 22(2):109-128.
[9] 邵勇, 赵宪钟. 半格序Clifford半群[J]. 数学进展, 2010, 39(1):59-63. SHAO Yong, ZHAO Xianzhong. Semilattice-ordered Clifford semigroups [J]. Advance in Mathematics, 2010, 39(1):59-63.
[10] SHAO Yong, CRVENKOVIC S, MITROVIC M. The zeleznikow problem on a class of additively idempotent semirings[J]. Journal of the Australian Mathematical Society, 2013, 95(3):404-420.
[1] LIU Chun-hui. On(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 65-72.
[2] LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110.
[3] LU Jing, ZHAO Bin. The projective objects in the category of fuzzy quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 47-54.
[4] YANG Wei-ping1, LIN Meng-lei2. Information granularity in intuitionistic fuzzy information systems [J]. J4, 2012, 47(1): 87-92.
[5] XIE Wei-qi1,2, LIU Dao-guang1, ZHANG Li2. The algebraic properties of internal P-sets [J]. J4, 2011, 46(3): 69-72.
[6] QIAO Xi-min1,2, WU Hong-bo1*. The representation theorem of lattice BR0-algebraic structure [J]. J4, 2010, 45(9): 38-42.
[7] ZHONG Jin, LIU Xiao-ji*. On the sharp ordering for Hilbert space operators [J]. J4, 2010, 45(4): 82-85.
[8] ZHANG Li-mei1,2. M-P inverses and weighted M-P inverses of matrices over a distributive lattice [J]. J4, 2010, 45(12): 33-39.
[9] LIU Jing-Lei, WANG Ling-Ling, ZHANG Wei. Generation algorithm for the role assigning lattice [J]. J4, 2009, 44(11): 52-56.
[10] XI Shen-si,HONG Xiao-guang,KONG Lei,YI Sheng-qi . Knowledge acquisition from a partial order decision table based on rough sets theory [J]. J4, 2007, 42(11): 82-84 .
[11] LIU Hong-xing . A strong distributive lattice of quotient semirings [J]. J4, 2006, 41(6): 43-45 .
Full text



No Suggested Reading articles found!