JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (9): 49-54.doi: 10.6040/j.issn.1671-9352.0.2017.650

Previous Articles     Next Articles

Design and implementation of topic detection in Russian news based on ontology

  

  1. 1. Post-Doctoral Research Station of Shanghai International Studies University, Shanghai 200083, China;
    2. Information Engineering University, Luoyang 471003, Henan, China
  • Received:2017-12-22 Online:2018-09-20 Published:2018-09-10

Abstract: Aiming at the problem of topic detection in Russian news, using automatic morphological analysis and named entity recognition as the auxiliary means, a method for describing Russian news elements and calculating their similarities based on ontology was designed. The Single-pass algorithm was used to carry out text clustering experiments for topic detection. By comparing the results of vector space model(VSM)model and ontology model, it is proved that the latter has relatively high accuracy and validity.

Key words: topic detection, Russian, ontology

CLC Number: 

  • TP391
[1] ALLAN J, JIN H, RAJMAN M, et al. Topic-based novelty detection[C] // Proceedings of the Johns Hopkins Summer Workshop. Baltimore: CLSP, 1999: 1-59.
[2] NALLAPATI R. Semantic language models for topic detection and tracking[C] // Proceedings of 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: the HLT-NAACL 2003 Student Research Workshop.[S.l.] : ACL, 2003: 1-6.
[3] MAKKONEN J. Investigations on event evolution in TDT[C] // Proceedings of 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: the HLT-NAACL 2003 Student Research Workshop.[S.l.] : ACL, 2003: 43-48.
[4] КОЛЬЦОВА Ю, КОЛЬЦОВ Н. Статистический и тематический профиль ??爯Живого журнала??爲[C] // Материалы научной конференции “Интернет и современное общество”. Санкт-Петербург: IMS, 2013: 96-104. KOLSOVA YU, KOLSOV N. Statistical and thematic profile of the “LiveJournal”[C] // Proceedings of Scientific Conference “Internet and Modern Society”. St Petersburg: IMS, 2013: 96-104.
[5] ДАНИЛОВА В, ПОПОВА В. Извлечения Событий Из Неструктурированного Текста Для Задач Интернет-Социологии[D]. Москва: Издательство Моска,РАНХиГС, 2015. DANILOVA V, POPOVA V. Extraction of events from the unstructured text for the tasks of internet sociology[D]. Moscow: Publishing House Moscow, RANEPA, 2015.
[6] 周学广, 高飞, 孙艳. 基于依存连接权VSM的子话题检测与跟踪方法[J]. 通信学报, 2013, 34(8):1-9. ZHOU Xueguang, GAO Fei, SUN Yan. Sub-topic detection and tracking based on dependency connection weights for vector space model[J]. Journal on Communications, 2013, 34(8):1-9.
[7] 李勇, 张克亮. 面向LDA和VSM模型的微博热点话题发现研究[J]. 自动化技术与应用, 2016, 35(8):52-57. LI Yong, ZHANG Keliang. Research of micro-blog hot topic detection based on LDA and VSM model[J].Techniques of Automation and Application, 2016, 35(08):52-57.
[1] YUAN Wei, YI Mian-zhu. Building a Russian-Chinese comparable corpus based on Wikipedia and its comparability calculation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 1-6.
[2] WANG Tong, MA Yan-zhou, YI Mian-zhu. Speech recognition of Russian short instructions based on DTW [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 29-36.
[3] CHEN Qiang, DU Pan, CHEN Hai-qiang, BAO Xiu-guo, LIU Yue, CHENG Xue-qi. K-Canopy:a fast data segmentation algorithm for the topic detection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 106-112.
[4] MA Li-fei, MO Qian, DU Hui. Research on classification for Chinese short film reviews [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 52-57.
[5] LIU Jian, XU Hong-bo, YI Mian-zhu, CHENG Xue-qi. Multi-dimensional semantic ontology construction oriented to knowledge-level application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 13-20.
[6] ZHANG Ming, TANG Hui-feng, LI Zhu-feng. Coreference wordlist construction of Russian weapon [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 36-42.
[7] ZHENG Jian-xing, ZHANG Bo-feng*, YUE Xiao-dong, CHENG Ze-yu. Research on themes recommendation in microblogging
scenario based on neighbor-user profile
[J]. J4, 2013, 48(11): 59-65.
[8] CHEN Ke-rui, PAN Jun. Multi-source data fusion based on the expand vector space model [J]. J4, 2013, 48(11): 87-92.
[9] ZHENG Xiao-rong. Measure model for trusted Web services [J]. J4, 2011, 46(9): 53-56.
[10] GAO Feng1, HE Jing-sha2. A  privacy protection method based on a trust and information flow model [J]. J4, 2011, 46(5): 39-43.
[11] XU Jian-min1,3, CHEN Zhen-ya2, CUI Yan3. Query expansion method based on the user interest and term relation [J]. J4, 2011, 46(5): 49-53.
[12] LI Ji-bao,LI Qing-zhong,YAN Zhong-min . Research and implement of a map search system based on Deep Web [J]. J4, 2007, 42(11): 59-61 .
[13] SHI Yi-yi . Research on semanticbased Web data search engine [J]. J4, 2006, 41(3): 23-29 .
[14] ZHENG Jian-zhen,LIN Kun-hui,ZHOU Chang-le,KANG Kai . Ontology based on focused crawler [J]. J4, 2006, 41(3): 90-94 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!