JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (12): 80-89.doi: 10.6040/j.issn.1671-9352.0.2018.057
Previous Articles Next Articles
LI Guo-cheng1, WANG Ji-xia2*
CLC Number:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-659. [2] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3:125-144. [3] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bonds and currency options[J]. Review of Financial Studies, 1993, 6(2):327-343. [4] BATES D S. Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options[J]. Review of Financial Studies, 1996, 9(1):69-107. [5] 吴嘉伟, 孙升雪, 王力卉,等. 与期权定价模型相关的参数估计的研究综述[J]. 时代金融, 2015(11):268-269. WU Jiawei, SUN Shengxue, WANG Lihui, et al. A survey of parameter estimation related to option pricing model J]. Times Finance, 2015(11):268-269. [6] ZHYLYEVSKYY O. A fast Fourier transform technique for pricing American options under stochastic volatility[J]. Review of Derivatives Research, 2010, 13(1):1-24. [7] CONT R, TANKOV P. Non-parametric calibration of jump-diffusion option pricing models[J]. Journal of Computational Finance, 2004, 7(3):1-50. [8] AVELLANEDA M, BUFF R, FRIEDMAN C, et al. Weighted Monte Carlo: a new technique for calibrating asset-pricing models[J]. International Journal of Theoretical and Applied Finance, 2001, 4(1):91-119. [9] 李斌, 何万里. 一种寻找Heston期权定价模型参数的新方法[J]. 数量经济技术经济研究, 2015(3):129-146. LI Bin, HE Wanli. A new method of finding the parameters of Hestons option pricing model[J]. The Journal of Quantitative & Technical Economics, 2015(3):129-146. [10] GERLICH F, GIESE A M, MARUHN J H, et al. Parameter identification in financial market models with a feasible point SQP algorithm[J]. Computational Optimization & Applications, 2012, 51(3):1137-1161. [11] HE C, KENNEDY J S, COLEMAN T F, et al. Calibration and hedging under jump diffusion[J]. Review of Derivatives Research, 2006, 9(1):1-35. [12] CHAN K C, KAROLYI G A, LONGSTAFF F A, et al. An empirical comparison of alternative models of the short-term interest rate[J]. Journal of Finance, 1992, 47(3):1209-1227. [13] ESCOBAR M, GSCHNAIDTNER C. Parameters recovery via calibration in the Heston model: a comprehensive review[J]. Wilmott, 2016, 2016(86):60-81. [14] GILLI M, SCHUMANN E. Calibrating option pricing models with heuristics[M] // BRABAZON A, ONEILL M, MARINGER D. Natural computing in computational finance. Berlin: Springer-verlag, 2011: 9-37. [15 ] 王林, 张蕾, 刘连峰. 用模拟退火算法寻找Heston期权定价模型参数[J]. 数量经济技术经济研究, 2011(9):131-139. WANG Lin, ZHANG Lei, LIU Lianfeng. Calibration of Hestons option pricing model by using simulated annealing algorithm[J]. The Journal of Quantitative & Technical Economics, 2011(9):131-139. [16] 王平, 王垣苏, 黄运成. 支持向量回归方法的跳跃扩散汇率期权定价[J]. 管理工程学报, 2011, 25(1):134-139. WANG Ping, WANG Hengsu, HUANG Yuncheng. Pricing jump-diffusion currency options with support vector regression[J]. Journal of Industrial Engineering and Engineering Management, 2011, 25(1):134-139. [17] GILLI M, SCHUMANN E. Calibrating the Heston model with differential evolution[C] //International Conference on Applications of Evolutionary Computation. Berlin: Springer-verlag, 2010: 242-250. [18] ARDIA D, DAVID J, ARANGO O, et al. Jump-diffusion calibration using differential evolution[J]. Wilmott, 2011,(55):76-79. [19] 郭恒烨. 基于神经网络的优化Black-Scholes期权定价模型数值求解[J]. 哈尔滨师范大学自然科学学报, 2016, 32(4):41-44. GUO Henghua. Numerical solution of optimal Black-Scholes option pricing model based on neural network[J]. Natural Science Journal of Harbin Normal University, 2016, 32(4):41-44. [20] FAN K, BRABAZON A, OSULLIVAN C, et al. Quantum-inspired evolutionary algorithms for calibration of the VG option pricing model[M] // GIACOBINI M. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2007: 189-198. [21] 李国成, 肖庆宪. 求解期末亏损最小对冲问题的交叉熵蝙蝠算法[J]. 系统工程, 2014,(11):11-18. LI Guocheng, XIAO Qingxian. Cross-entropy-inspired bat algorithm for hedging problems with minimum shortfall[J]. Systems Engineering, 2014,(11):11-18. |
[1] | LI Hui, FENG Si-feng. Chaotic secure communication based on parameter estimation of particle filter [J]. J4, 2011, 46(9): 1-4. |
[2] | MIAO Jie 1, SHI Ke 2, CAI Hua 1. The pricing of bond with attached warrant under the jump-diffusion model [J]. J4, 2010, 45(8): 109-117. |
|