JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (5): 112-126.doi: 10.6040/j.issn.1671-9352.0.2018.060
PENG Jia-yin
CLC Number:
[1] HOPCROFT J E, ULLMAN J D. Introduction to automata theory, language, and computation[M]. New Yrok: Addison-Wesley, 1979. [2] ALON N, DEWDNEY A, OTT T. Efficient simulation of finite automata by neural nets[J]. J Assoc Comput Mach, 1991, 38(2):498-514. [3] 沈恩绍. 模型论逻辑与理论计算机科学[J]. 数学进展,1996,25(3):193-202. SHEN Enshao. Model theoretic logic and theoretical computer science[J]. Advance in Mathematics, 1996,25(3):193-202. [4] BOOCH G, RUMBAUGH J, JACOBSON J. The unified modeling language user guide[M]. New York: Addison-Wesley, 1999. [5] HOPCROFT J E, ULLMAN J D. Decidable and undecidable questions about automata[J]. Journal of the ACM, 1968, 15(2):317-324. [6] WEE W G. On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification[M]. USA: Purdue University,1967. [7] KANDEL A, LEE S C. Fuzzy switching and automata: theory and applications[M]. London: Grane Russak, 1980: 171-262. [8] 付雯静, 韩召伟. 量化上下文无关语言的代数性质[J]. 计算机科学, 2017, 44(7):57-60. FU Wenjing, HAN Zhaowei. Algebraic properties of quantized context free languages[J]. Computer Science, 2017, 44(7):57-60. [9] 彭家寅. 扰动值模糊有限自动机及其语言[J]. 模式识别与人工智能, 2016, 29(4):298-312. PENG Jiayin. Disturbing-valued fuzzy finite-state automata and their languages[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(4):298-312. [10] 薛倩倩, 李永明. 格值模糊自动机及对应语言的分级[J]. 陕西师范大学学报(自然科学版), 2014,42(3):10-14. XUE Qianqian, LI Yongming. Classification of lattice valued fuzzy automata and corresponding languages[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, 42(3):10-14. [11] LEE E T, ZADEH L A. Note on fuzzy languages[J]. Information Sciences, 2015, 1(4):421-434. [12] 付雯静, 韩召伟. 取值于赋值幺半群的加权下推自动机的代数性质[J]. 陕西师范大学学报(自然科学版), 2017, 45(3):9-16. FU Wenjing, HAN Zhaowei. Algebraic properties of weighted pushdown automata over valuation monoid[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2017, 45(3):9-16. [13] 王月, 李永明. 取值于赋值幺半群的加权上下文无关文法及其语言[J]. 模糊系统与数学, 2017,31(1):165-173. WANG Yue, LI Yongming. Weighted context free grammars over valuation monoid and their languages[J]. Fuzzy Systems and Mathematics, 2017, 31(1):165-173. [14] 范艳焕, 耿生玲, 李永明. Pebble模糊有穷自动机和传递闭包逻辑[J]. 模糊系统与数学, 2015, 29(4):38-44. FAN Yanhuan, GENG Shengling, LI Yongming. Pebble fuzzy finite automata and transitive closure logic[J]. Fuzzy Systems and Mathematics, 2015, 29(4):38-44. [15] 赵菲, 李永明. 取值于赋值幺半群的加权正则文法语言[J]. 计算机工程与科学, 2016, 38(7):1405-1412. ZHAO Fei, LI Yongming. Weighted regular grammars over valuation monoid[J]. Computer Engineering & Science, 2016, 38(7):1405-1412. [16] SHU L. The relation between fuzzy 3 grammars and fuzzy finite automata[J]. Mathematical Application, 1989, 2(1):111-112. [17] 柏明强. Fuzzy树自动机的等价性[J]. 四川师范大学学报(自然科学版),2009,32(1):13-16. BAI Mingqiang. The equivalence on two kinds of fuzzy tree automata[J]. Journal of Sichuan Normal University(Natural Science Edition), 2009, 32(1):13-16. [18] 莫智文,彭家寅.模糊极小自动机与约简模糊自动机[J].四川师范大学(自然科学版),2002,25(6):585-587. MO Zhiwen, PENG Jiayin. Fuzzy minimal automaton and reduced fuzzy automaton[J]. Journal of Sichuan Normal University, 2002, 25(6):585-587. [19] 邱道文. 基于完备剩余格值逻辑的自动机理论——I.拓扑刻画[J]. 中国科学(E辑:技术科学),2003, 33(2):137-146. QIU Daowen. Automata theory based on complete residuated lattice—valued logic I[J]. Science in China(Series E: Technologica), 2003, 33(2):137-146. [20] 邱道文. 基于完备剩余格值逻辑的自动机理论——II.可逆性及同态[J]. 中国科学(E辑:技术科学),2003, 33(4):340-349. QIU Daowen. Automata theory based on complete residuated lattice—valued logic II[J]. Science in China(Series E: Technologica), 2003, 33(4):340-349. [21] 彭家寅. 基于完备剩余格值逻辑的自动机与文法理论[J]. 模式识别与人工智能,2011,24(5):610-618. PENG Jiayin. Automata and grammars theory based on complete residuated lattice-valued logic[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(5):610-618. [22] 李永明. 格值自动机与语言[J]. 陕西师范大学学报(自然科学版),2003,31(4):1-6. LI Yongming. Lattice-valued automata and their languages[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2003, 31(4):1-6. [23] YING Mingsheng. Automata theory based on quantum logic I[J]. International Journal of Theoretical Physics, 2000, 39(4):985-995. [24] YING Mingsheng. Automata theory based on quantum logic II[J]. International Journal of Theoretical Physics, 2000, 39(11):985-995. [25] QIU Daowen. Automata theory based on quantum logic: some characterizations[J]. Information and Computation, 2004, 190(2):179-195. [26] 李永明. 基于量子逻辑的有穷自动机与单体二阶量子逻辑[J]. 中国科学(F辑:信息科学),2009, 39(11):1135-1145. LI Yongming. Finite automata based on quantum logic and monadic second-order quantum logic[J]. Science in China(Series F: Information Sciences), 2009, 39(11):1135-1145. [27] SHANG Y, LU X, LU R Q. Automata theory based on unsharp quantum logic[J]. Mathematical Structures in Computer Science, 2009, 19(4):737-756. [28] 彭家寅. 基于Unsharp量子逻辑的自动机与文法理论[J]. 计算机工程与应用,2012, 48(28):57-60. PENG Jiayin. Automata and grammars theory based on unsharp quantum logic[J]. Computer Engineering and Applications, 2012, 48(28):57-60. [29] KHOUSSAINOV B, NRRODE A. Automata theory and its applications[M]. Boston: Birkauser, 2001. [30] 舒兰.识别Fuzzy上下文无关语言的下推自动机[J].电子科技大学学报,1992, 21(2):188-190. SHU Lan. Pushdown automata accepted Fuzzy context-free language[J]. Journal of UEST of China, 1992, 21(2):188-190. [31] 彭家寅. Fuzzy下推自动机与Fuzzy上下文无关语言的关系[J]. 四川师范大学学报(自然科学版),2000, 23(1):27-30. PENG Jiayin. The relation between fuzzy pushdown automata and fuzzy context-free languages[J]. Journal of Sichuan Normal University(Natural Science), 2000, 23(1):27-30. [32] 韩召伟,李永明. 基于量子逻辑的下推自动机与上下文无关文法[J]. 软件学报,2010, 21(9):2107-2117. HAN Zhaowei, LI Yongming. Pushdown automata and context-free grammars based on quantum logic[J]. Journal of Software, 2010, 21(9):2107-2117. [33] 彭家寅. 格值下推自动机与格值上下文无关文法[J]. 计算机工程与应用,2011,47(25):34-38. PENG Jiayin. Lattice-valued pushdown automata and lattice-valued context-free grammars[J]. Computer Engineering and Applications, 2011, 47(25):34-38. [34] PAVELKA J. On fuzzy logic I: many-valued rules of inferences[J]. Z Math Logik Grundlagen Math,1979, 25:45-52. [35] PAVELKA J. On fuzzy logic II: enriched residuated lattices and semantics of propositional calcui[J]. Z Math Logik Grundlagen Math, 1979, 25:119-134. [36] PAVELKA J. On fuzzy logic III: semantical completeness of some many-valued propositional calculi[J]. Z Math Logik Grundlagen Math, 1979, 25:447-464. [37] LI Y M, LI Z H. Free semilattices and strongly free semilattices generated by partially ordered sets[J]. Northeastern Mathematical Journal, 1993, 9(3):395-366. |
No related articles found! |
|