JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (10): 22-26.doi: 10.6040/j.issn.1671-9352.0.2018.147

Previous Articles     Next Articles

Graded version of Enochs theorem

WU Xiao-ying, WANG Fang-gui*   

  1. College of Mathematics, Sichuan Normal University, Chengdu 610068, Sichuan, China
  • Received:2018-03-22 Online:2018-10-20 Published:2018-10-09

Abstract: It is shown that graded version of Enochs theorem is proved. Let B be a finitely generated graded R-module and let A be a graded submodule of B. If every graded homomorphsim f: A→E can be extended to B for any FP-gr-injective R-module E, then A is finitely generated. It follows that a finitely generated graded R-module M is finitely presented if and only if EXT1R(M,E)=0 for any FP-gr-injective module E.

Key words: FP-injective module, graded super finitely presented module, FP-gr-injective module, finitely presented module

CLC Number: 

  • O153.3
[1] ENOCHS E E. A note on absolutely pure modules[J]. Canad Math Bull, 1976, 19(3):361-362.
[2] GAO Zenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Comm Algebra, 2015, 43:3875-3868.
[3] WANG Fanggui, QIAO Lei, KIM Hwankoo. Super finitely presented modules and Gorenstein projective modules[J]. Comm Algebra, 2016, 44:4056-4072.
[4] WANG Fanggui, KIM Hwankoo. Foundations of commutative rings and their modules[M]. Singapore: Springer, 2016.
[5] STENSTRÖM B. Coherent rings and FP-injective modules[J]. J Lond Math Soc, 1970, 2:323-329.
[6] GOTO S, WATANABE K. On graded rings:I[J]. J Math Soc Japan, 1978, 30(30):179-213.
[7] GOTO S, WATANABE K. On graded rings: II[J]. Tokyo J Math, 1978(1):237-261.
[8] NASTASESEU C, OYSTAEYEN F V. Methods of graded rings[M]. New York: Springer, 2004.
[9] ASENSIO M J, RAMOS J A L, TORRECILLAS B. FP-gr-injective modules and gr-FC-rings[J]. Algebra & Number Theory, 1999: 1-11.
[10] NASTASESEU C, OYSTAEYEN F V. Graded ring theory [M]. New York: Springer, 1982.
[11] YANG Xiaoyan, LIU Zhongkui. FP-gr-injective modules[J]. Math J Okayama Univ, 2011, 53:83-100.
[12] 谢邦杰. 超穷数与超穷论法[M]. 长春: 吉林人民出版社, 1979. XIE Bangjie. Super poor number and super poor theory[M]. Changchun: Jilin Renmin Press, 1979.
[1] CHEN Wen-jing, LIU Zhong-kui. Remarks on n-strongly Gorenstein FP-injective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!