### Counting solutions of a binary quadratic congruence equation

DUAN Ran

1. School of Mathematics, Northwest University, Xian 710127, Shaanxi, China
• Online:2019-08-20 Published:2019-07-03

Abstract: Let n be a positive integer. Denote by Zn the ring of residue classes mod n, and by Z*n the group of units in Zn, i.e. Z*n={s:1≤s≤n and gcd(s,n)=1}. The main purpose of this paper is using congruence conclusion and some results of exponential sums to study the number of elements of the set T(a,b,c,n)={(x,y)∈(Z*n)2:ax2+by2+c≡0 mod n} and give an exact computational formula for the number of elements of T(a,b,c,n).

CLC Number:

• O156.4
 [1] DEACONESCU M. Adding units mod n[J]. Elem Math, 2000, 55:123-127.[2] DEACONESCU M, DU H K. Counting similar automorphisms of finite cyclic groups[J]. Math Japonica, 1997, 46:345-348.[3] SANDER J W. On the addition of units and nonunits mod m[J]. Journal of Number Theory, 2009, 129:2260-2266.[4] YANG Quanhui, TANG Min. On the addition of squares of units and nonunits modulo n[J]. Journal of Number Theory, 2015, 155:1-12.[5] TÓTH L. Counting solutions of quadratic congruences in several variables revisited[J]. Journal of Integer Sequences, 2014, 17: Article 14.11.6.[6] APOSTOL T M. Introduction to analytic number theory[M]. Berlin: Springer-Verlag, 1976.[7] ZHANG Wenpeng, HE Y. On the 2k-th power mean value of the generalized quadratic Gauss sums[J]. Bull Korean Math Soc, 2011, 48:9-15.[8] HUA Lookeng. Introduction to number theory[M]. Berlin: Springer-Verlag, 1982.
 [1] LI Jiao, CAO Ya-meng, LI Guo-quan. Complete exponential sum estimates in function fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 91-99. [2] YIN Hua-jun1,2, ZHANG Xi-yong1,2*. A new method to evaluate the exponential sums of quadratic functions on finite field with character 2 [J]. J4, 2013, 48(3): 24-30. [3] GUO Xiao-yan. Mean value of D.H.Lehmer problem in short interval [J]. J4, 2011, 46(12): 76-82.
Viewed
Full text

Abstract

Cited

Shared
Discussed
 [1] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 . [2] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 . [3] LIU Zhan-jie1, MA Ru-ning1, ZOU Guo-ping1, ZHONG Bao-jiang2, DING Jun-di 3. An algorithm for color image segmentation based on region growth[J]. J4, 2010, 45(7): 76 -80 . [4] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 . [5] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 . [6] WU Yun1,2, HAN Ya-die1. Existence of nontrivial solutions of nonlinear elliptic equation with critical potential[J]. J4, 2013, 48(4): 91 -94 . [7] HE Hai-lun， CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 . [8] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 . [9] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 . [10] YUAN Hun-ping . Schur factorization and normal matrices factorization of row (column) symmetric matrices[J]. J4, 2007, 42(10): 123 -126 .