JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 24-31.doi: 10.6040/j.issn.1671-9352.0.2018.513
LIN Fu-biao, ZHANG Qian-hong
CLC Number:
[1] MALFLIET W. Solitary wave solutions of nonlinear wave equations[J]. American Journal of Physics, 1992, 60(7):650-654. [2] PARKES E J, DUFFY B R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J]. Computer Physics Communications, 1996, 98(3):288-300. [3] 范恩贵. 可积系统与计算机代数[M]. 北京: 科学出版社, 2004. FAN Engui. Integrable systems and computer algebra[M]. Beijing: Science Press, 2004. [4] SI REN daoerji. A new application of the extended tanh-function method[J]. Journal of Inner Mongolia Normal University, 2007, 36(4):391-396, 401. [5] LIU Shishi. Travelling wave solution for KdV-Burgers-Kuramoto equation[J]. Progress in Natural Science, 1999, 9(10):921-928. [6] 刘式达, 刘式适, 黄朝晖, 等. KdV-Burgers-Kuramoto方程的行波解[J]. 自然科学进展, 1999, 9(10):912-918. LIU Shida, LIU Shishi, HUANG Zhaohun, et al. Travelling wave solution of KdV-Burgers-Kuramoto equation[J]. Progress in Natural Science, 1999, 9(10):912-918. [7] SIVASHINSKY G I. Large cells in nonlinear marangoni convection[J]. Physica D Nonlinear Phenomena, 1982, 4(2):227-235. [8] PARKES E J, DUFFY B R, ABBOTT P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J]. Physics Letters A, 2002, 295(5/6):280-286. [9] KUDRYASHOV N A. Exact solutions of the generalized Kuramoto-Sivashinsky equation[J]. Physics Letters A, 1990, 147(5):287-291. [10] 李晓东, 常晶. 一类广义Kuramoto-Sivashinsky方程的Lie对称分析[J]. 黑龙江大学自然科学学报, 2015, 32(3):297-301. LI Xiaodong, CHANG Jing. Lie symmetry analysis for a generalized Kuramoto-Sivashinsky equation[J]. Journal of Natural Science of Heilongjiang University, 2015, 32(3):297-301. [11] 毛杰健, 杨建荣. 非线性KdV-Burgers-Kuramoto方程新的行波解[J]. 兰州理工大学学报, 2006, 32(2):150-153. MAO Jiejian, YANG Jianrong. New traveling-wave solution of nonlinear KdV-Burgers-Kuramoto equation[J]. Journal of Lanzhou University of Technology, 2006, 32(2):150-153. [12] WANG Mingliang. Solitary wave solutions for variant Boussinesq equations[J]. Physics Letters A, 1995, 199(3/4):169-172. [13] WANG Mingliang. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letter A, 1996, 213(5/6):279-287. [14] 吴文俊. 数学机械化[M]. 北京: 科学出版社, 2003. WU Wenjun. Mathematics mechanization[M]. Beijing: Science Press, 2003. [15] OLVER P J. Applications of Lie groups to differential equations[M]. 2nd ed. New York: Springer, 1993. [16] OVSIANNIKOV L V. Group analysis of differential equations[M]. New York: Academic Press, 1982. [17] MELESHKO S V. Methods for constructing exact solutions of partial differential equations: mathematical and analytical techniques with applications to engineering[M]. New York: Springer, 2005. [18] GRIGORIEV Y N, IBRAGIMOV N H, KOVALEV V F, et al. Symmetries of integro-differential equations: with applications in mechanics and plasma physics[M]. New York: Springer, 2010. |
[1] | GAO Rong, ZHANG Huan-shui. Stabilization for discrete-time stochastic systems with multiple input delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 105-110. |
[2] | SUN Qi-liang, ZHANG Qi-xia*. A maximum principle approach for stochastic H2/H∞ control [J]. J4, 2013, 48(09): 90-95. |
[3] | LV Hai-Ling, LIU Xi-Qiang, NIU Lei. A generalized [G′/G]expansion method and its applications in nonlinear mathematical physics equations [J]. J4, 2010, 45(4): 100-105. |
[4] | SUN Yan-yan and WU Zhen . Sufficient condition of one kind of indefinite LQ solvable problem under partial information [J]. J4, 2007, 42(3): 29-31 . |
|