JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (3): 28-37.doi: 10.6040/j.issn.1671-9352.0.2018.601
• • Previous Articles Next Articles
CLC Number:
1 | BRUCE N, TSOTSOS J. Saliency based on information maximization[C]// Proceedings of 18th Advances in Neural Information Processing Systems (NIPS 2005). Vancouver: MIT Press, 2005: 155-162. |
2 | BRUCE N , TSOTSOS J . Saliency, attention, and visual search: an information theoretic approach[J]. Journal of Vision, 2009, 3 (9): 5.1- 24. |
3 | FRINTROP S, WERNER T, GARCIA M. Traditional saliency reloaded: a good old model in new shape[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). Boston: MA, 2015: 82-90. |
4 |
GAO D , VASCONCELOS N . Decision-theoretic saliency: computational principles, biological plausibility, and implications for neurophysiology and psychophysics[J]. Neural Computation, 2009, 21 (1): 239- 271.
doi: 10.1162/neco.2009.11-06-391 |
5 | HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]// Proceedings of 19th Advances in Neural Information Processing Systems (NIPS 2006). Canada: MIT Press, 2006: 545-552. |
6 | HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007). Minneapolis: MN, 2007: 1-8. |
7 |
ITTI L , KOCH C , NIEBUR E . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11): 1254- 1259.
doi: 10.1109/34.730558 |
8 | JUDD T, EHINGER K, DURAND F, et al. Learning to predict where humans look[C]// Proceedings of 2009 International Conference on Computer Vision (ICCV 2009). Kyoto: IEEE, 2009: 2106-2113. |
9 | KLEIN D, FRINTROP S. Center-surround divergence of feature statistics for salient object detection[C]// Proceedings of 2011 International Conference on Computer Vision (ICCV 2011). Barcelona: IEEE, 2011: 2214-2219. |
10 | SEO H , MILANFAR P . Static and space-time visual saliency detection by self-resemblance[J]. Journal of Vision, 2009, 9 (12): 15.1- 27. |
11 | YANG J, YANG M. Top-down visual saliency via joint crf and dictionary learning[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Rhode Island: IEEE, 2012: 2296-2303. |
12 | ZHANG L , TONG M H , MARKS T K , et al. Sun: a Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8 (7): 32.1- 20. |
13 | ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]// Proceedings of 2008 International Conference on Computer Vision Systems (ICVS 2008). Berlin: Springer, 2008: 66-75. |
14 | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami: IEEE, 2009: 1597-1604. |
15 | CHANG K, LIU T, CHEN H, et al. Fusing generic objectness and visual saliency for salient object detection[C]// Proceedings of 2011 International Conference on Computer Vision (ICCV 2011). Barcelona: IEEE, 2011: 914-921. |
16 |
CHENG M , MITRA N J , HUANG X , et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 569- 582.
doi: 10.1109/TPAMI.2014.2345401 |
17 | CHENG M, WARRELL J, LIN W, et al. Efficient salient region detection with soft image abstraction[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 1529-1536. |
18 |
FELZENSZWALB P F , HUTTENLOCHER D P . Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59 (2): 167- 181.
doi: 10.1023/B:VISI.0000022288.19776.77 |
19 |
GOFERMAN S , ZELNIK-MANOR L , TAL A . Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (10): 1915- 1926.
doi: 10.1109/TPAMI.2011.272 |
20 | JIANG B, ZHANG L, LU H, et al. Saliency detection via absorbing markov chain[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 1665-1672. |
21 | JIANG H, WANG J, YUAN Z, et al. Salient object detection: a discriminative regional feature integration approach[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 2083-2090. |
22 | JIANG P, LING H, YU J, et al. Salient region detection by ufo: uniqueness, focusness and objectness[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Syndney: IEEE, 2013: 1976-1983. |
23 | KIM J, HAN D, TAI Y W, et al. Salient region detection via high-dimensional color transform[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 883-890. |
24 | LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 2976-2983. |
25 | LIU R, CAO J, LIN Z, et al. Adaptive partial differential equation learning for visual saliency detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 3866-3873. |
26 |
LIU T , YUAN Z , SUN J , et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (2): 353- 367.
doi: 10.1109/TPAMI.2010.70 |
27 | LU S, MAHADEVAN V, VASCONCELOS N. Learning optimal seeds for diffusion-based salient object detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 2790-2797. |
28 | MAI L, NIU Y, LIU F. Saliency aggregation: a data-driven approach[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1131-1138. |
29 | MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct?[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1139-1146. |
30 | PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012: 733-740. |
31 | QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). Boston: IEEE, 2015: 110-119. |
32 | REN Z, HU Y, CHIA L T, et al. Improved saliency detection based on superpixel clustering and saliency propagation[C]// Proceedings of 18th ACM international conference on Multimedia (MM2010). Firenze: ACM, 2010: 1099-1102. |
33 | SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012: 853-860. |
34 | SIVA P, RUSSELL C, XIANG T, et al. Looking beyond the image: unsupervised learning for object saliency and detection[C]// Procceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 3238-3245. |
35 |
XIE Y , LU H , YANG M . Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22 (5): 1689- 1698.
doi: 10.1109/TIP.2012.2216276 |
36 | YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1155-1162. |
37 | YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 3166-3173. |
38 | ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 2814-2821. |
39 | ZOU W, KOMODAKIS N. Harf: hierarchy-associated rich features for salient object detection[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 406-414. |
40 | 王军, 吴泽民, 杨巍, 等. 基于稀疏恢复与优化的显著性目标检测算法[J]. 计算机科学, 2018, 45 (8): 258- 263. |
WANG Jun , WU Zemin , YANG Wei , et al. Salient object detection algorithm based on sparse recovery and optimization[J]. Computer Science, 2018, 45 (8): 258- 263. | |
41 |
孙赫赫, 尚晓清, 王冲. 基于区域对比的图像显著性检测方法[J]. 计算机工程与应用, 2018, 54 (10): 192- 195.
doi: 10.3778/j.issn.1002-8331.1612-0439 |
SUN Hehe , SHANG Xiaoqing , WANG Chong . Method of saliency detection based on region contrast[J]. Computer Eninerring and Applications, 2018, 54 (10): 192- 195.
doi: 10.3778/j.issn.1002-8331.1612-0439 |
|
42 |
刘亚宁, 吴清, 魏雪. 基于流行排序的前景背景显著性检测算法[J]. 科学技术与工程, 2018, 18 (18): 74- 81.
doi: 10.3969/j.issn.1671-1815.2018.18.011 |
LIU Yaning , WU Qing , WEI Xue . Saliency detection combined foreground with background based on manifold ranking[J]. Science Technology and Engineering, 2018, 18 (18): 74- 81.
doi: 10.3969/j.issn.1671-1815.2018.18.011 |
|
43 | 梁大川, 李静, 刘赛. 基于图和稀疏主成分分析的多目标显著性检测[J]. 计算机研究与发展, 2018, 55 (5): 1078- 1089. |
LIANG Dachuan , LI Jing , LIU Sai . Multiple object saliency detection based on graph and sparse principal component analysis[J]. Journal of Computer Research and Development, 2018, 55 (5): 1078- 1089. | |
44 | 侯向丹, 刘晓曼, 刘洪普, 等. 基于多尺度多特征的显著性区域检测[J]. 河北工业大学学报, 2017, 1 (6): 26- 31. |
HOU Xiangdan , LIU Xiaoman , LIU Hongpu , et al. Salient region detection via multi-scale and multi-feature[J]. Journal of Hebei University of Technology, 2017, 1 (6): 26- 31. | |
45 |
ERDEM E , ERDEM A . Visual saliency estimation by non-linearly integrating features using region covariance[J]. Journal of Vision, 2013, 13 (4): 11.
doi: 10.1167/13.4.11 |
46 | JIANG P, VASCONCELOS N, PENG J. Generic promotion of diffusion-based salient object detection[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 217-225. |
47 | ZHANG J, SCLAROFF S. Saliency detection: a boolean map approach[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 153-160. |
48 | ZHANG J, SCLAROFF S, LIN Z, et al. Minimum barrier salient object detection at 80 fps[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 1404-1412. |
49 | 蒋鹏.图像内容显著性检测的理论和方法研究[D].济南:山东大学, 2016. |
JIANG Peng. Research on theories and methodologies for saliency detection from images[D]. Jinan: Shandong Unversity, 2016. |
[1] | Fu-sheng WU,Huan-guo ZHANG,Ming-tao NI,Jun WANG. Security analysis model of behavior based on cryptographic protocols implement at source code level [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 18-27. |
[2] | Xiao-jie XIE,Ying LIANG,Xiang-xiang DONG. Sensitive attribute iterative inference method for social network users [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 10-17, 27. |
[3] | Tian-tian CHANG,Xing-shu CHEN,Yong-gang LUO,Xiao LAN. Security domain-based data isolation protection framework for Hive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 1-9. |
[4] | Ze-nan WU,Li-qin TIAN,Zhi-gang WANG. A user behavior trust evaluation combined with sliding window and recommended trust [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 53-59. |
[5] | Yao-yao DU,Ping PAN,Jin-hua LINGHU. Evaluation method of information system grade protection based on DIT [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 47-52. |
[6] | Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55. |
[7] | JIAO Hong-ru, QIN Jing. Quantum secret sharing scheme realizing all hyperstar quantum access structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 62-68. |
[8] | YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12-22. |
[9] | ZHANG Jian-biao, LI Zhi-gang, LIU Guo-jie, WANG Chao, WANG Wei. Process active dynamic measurement method for Windows environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 46-50. |
[10] | LIU Zheng, NIU Fang-lin, QIAN Da-xing, CAI Xi-biao, GUO Ying. Design of anti-eavesdropping code based on fountain codes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 60-64. |
[11] | XU Li-dong, WANG Ming-qiang. A meet-in-the-middle attack on 10-round AES-128 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 39-45. |
[12] | CUI Zhao-yang, SUN Jia-qi, XU Song-yan, JIANG Xin. A secure clustering algorithm of Ad Hoc network for colony UAVs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 51-59. |
[13] | LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian. Steganalysis method based on shallow convolution neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 63-70. |
[14] | RUAN Shu-hua, WENG Jun-hao, MAO Hui, CHEN Xue-lian. Metric model for cloud computing security risk assessment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 71-76. |
[15] | KANG Hai-yan, HUANG Yu-xuan, CHEN Chu-qiao. Enhancing privacy for geographic information based on video analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 19-29. |
|