JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 1-11.doi: 10.6040/j.issn.1671-9352.0.2018.709
LIN Guo-guang, LI Zhuo-xi
CLC Number:
[1] IGOR C. Longtime dynamics of Kirchhoff wave models with strong nonlinear damping[J]. Journal of Differential Equations, 2012, 252(2):1229-1262. [2] YANG Zhijian, DING Pengyan. Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on Rn[J]. Journal of Mathematical Analysis and Applications, 2016, 434(2):1826-1851. [3] NAKAO M, YANG Zhijian. Global attractors for some quasi-linear wave equations with a strong dissipation[J]. Advance Mathematical Science Applications, 2007, 17(1):89-105. [4] GAO Yunlong, SUN Yuting, LIN Guoguang. The global attractors and their Hausdorff and Fractal dimensions estimation for the higher-order nonlinear Kirchhoff-type equation with strong linear damping[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(4):185-202. [5] CHEN Ling, WANG Wei, LIN Guoguang. The global attractors and the Hausdorff and Fractal demensions estimation for the high-order nonlinear Kirchhoff-type equation[J]. Journal of Advances in Mathematics, 2016, 12(9):6608-6621. [6] 林国广.非线性演化方程[M].昆明:云南大学出版社,2011: 123-184. LIN Guoguang. Nonlinear evolution equation[M]. Kunming: Yunnan University Press, 2011: 123-184. [7] ZHOU Shengfan. Dimension of the global attractor for strongly damped nonlinear wave equations[J]. Journal of Mathematical Analysis and Applications,1999,233(1):102-115. [8] 杨志坚,程建玲. Kirchhoff型方程解的渐近行为[J].数学物理学报,2011,31(4):1008-1021. YANG Zhijian, CHEN Jianling. Asymptotic behavior of solutions for Kirchhoff equations[J]. Journal of Mathematical Physics, 2011, 31(4):1008-1021. [9] LIN Guoguang, YANG Sanmei. Hausdorff dimension and Fractal dimension of the global attractor for the higher-order coupled Kirchhoff-type equations[J]. Journal of Applied Mathematics and Physics, 2017, 5(12):2411-2424. [10] YANG Zhijian, DING Pengyan, LI Lei. Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2016, 442(2):485-510. [11] LYU Penghui, LU Jinxing, LIN Guoguang. Global attractor for a class of nonlinear generalized Kirchhoff models[J]. Journal of Advances in Mathematics, 2016, 12(8):6452-6462. [12] LYU Penghui, LOU Ruijin, LIN Guoguang. Global attractor for a class of nonlinear generalized Kirchhoff-Boussinesq model[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(1):82-92. [13] SUN Yuting, GAO Yunlong, LIN Guoguang. The global attractors for the higher-order Kirchhoff-type equation with nonlinear strongly damped term[J]. International Journal of Modern Nonlinear Theory and Application, 2016, 5(4):203-217. |
[1] | ZHOU Xiao-ying, LIANG Yu, DONG Zhi, LI Hong-li, ZHANG Meng-xuan, HAN Xiu-feng, FAN Xiao-li, FANG Yong. Effects of Piriformospora indica on growth and root morphology of Pinus thunbergii seedlings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 7-14. |
[2] | PENG Tao-tao, LIU Wei-bin. Besicovitch-Eggleston type sets in cellular automata [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 53-58. |
[3] | CUI Yu-quan, LI Pei-pei, LI Lin-lin. The analysis of stock index sequence based on timing series model [J]. J4, 2013, 48(8): 68-77. |
|