JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (8): 1-13.doi: 10.6040/j.issn.1671-9352.0.2019.235
GONG Zeng-tai, SU Ai
CLC Number:
[1] IT(^overO)K. Stochastic integral[J]. Proc Imp Acad Tokyo, 1944, 20(8):519-524. [2] KWAKERNAAK H. Fuzzy random variables: I. Definitions and theorems[J]. Information Sciences, 1978, 15(1):1-29. [3] PURI M L, RALESCU D A. Fuzzy random variables[J]. Journal of Mathematical Analysis and Applications, 1986, 114(2):409-422. [4] KIM B K, KIM J H. Stochastic integrals of set-valued processes and fuzzy processes[J]. Journal of Mathematical Analysis and Applications, 1999, 236(2):480-502. [5] JUNG E J, KIM J H. On set-valued stochastic integrals[J]. Stochastic Analysis and Applications, 2003, 21(2):401-418. [6] KISIELEWICZ M. Existence theorem for nonconvex stochastic inclusions[J]. Journal of Application and Mathematical Stochastic Analysis, 1994, 7(2):151-159. [7] KISIELEWICZ M. Viability theorems for stochastic inclusions[J]. Discussiones Mathematicae Differential Inclusions, Control and Optimization, 1995, 15(1):61-74. [8] LI Shoumei, REN Aihong. Representation theorems, set-valued and fuzzy set-valued Itô-integral[J]. Fuzzy Sets and Systems, 2007, 158(9):949-962. [9] MCSHANE E J. Stochastic calculus and stochastic models[M]. New York: Academic Press, 1974. [10] PROTTER P. A comparison of stochastic integrals[J]. Annals of Probability, 1979, 7(2):276-289. [11] XU J G, LEE P Y. Stochastic integrals of Itô and Henstock[J]. Real Analysis Exchange, 1992/1993, 18:352-366. [12] CHEW T S, TAY J Y, TOH T L. The non-uniform Riemann approach to Itôs integral[J]. Real Analysis Exchange, 2001/2002, 27(2):495-514. [13] 黄志远. 随机分析学基础[M]. 2版. 北京: 科学出版社, 2001. HUANG Zhiyuan. Stochastic analytical fundation[M]. 2nd ed. Beijing: Science Press, 2001. [14] 吴从炘, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991. WU Congxin, MA Ming. Fuzzy analytical foundation[M]. Beijing: Defense Industry Press, 1991. [15] FENG Yuhu. Mean-squares Riemann-Stieltjes integrals of fuzzy stochastic processes and their applications[J]. Fuzzy Sets and Systems, 2000, 110(1):27-41. [16] WU Congxin, GONG Zengtai. On Henstock integral of fuzzy number-valued function(I)[J]. Fuzzy Sets and Systems, 2001, 120(3):523-532. [17] HENSTOCK R. The general theory of integration[M]. Oxford: Oxford University Press, 1991. [18] 李艳红, 王贵君. 广义模糊值Choquet积分的强序连续与伪S性[J]. 山东大学学报(理学版), 2008, 43(4):76-80. LI Yanhong, WANG Guijun. Strongly order continuity and pseudo-S-property of generalized fuzzy valued Choquet integrals[J]. Journal of Shandong University(Natural Science), 2008, 43(4):76-80. |
[1] | REN Jian-long. Reconstruction of unknown surface heat flux from an internal temperature history [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 83-90. |
[2] | QI Ting-ting, ZHANG Zhen-fu, LIU Yan-sheng. Existence of positive solutions for fractional differential system with coupled integral boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 71-78. |
[3] | TAO Shuang-ping, GAO Rong. Estimates of multilinear fractional integrals and maximal operators on weighted Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 30-37. |
[4] | XIN Yin-ping, TAO Shuang-ping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 38-43. |
[5] | CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15. |
[6] | GONG Zeng-tai, GAO Han. Preinvexity of n-dimensional fuzzy number-valued functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 72-81. |
[7] | GONG Zeng-tai, KOU Xu-yang. Representation of Choquet integral of the set-valued functions with respect to fuzzy measures and the characteristic of its primitive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 1-9. |
[8] | FENG Hai-xing, ZHAI Cheng-bo. Multiple positive solutions of a system of high order nonlinear fractional differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 48-57. |
[9] | CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88. |
[10] | YAO Jun-qing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 100-105. |
[11] | . Application of fuzzy differential transform method for solving fuzzy integral differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 42-49. |
[12] | KONG Yi-ting, WANG Tong-ke. The steepest descent method for Fourier integrals involving algebraic and logarithmic singular factors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 50-55. |
[13] | SU Xiao-feng, JIA Mei, LI Meng-meng. Existence of solution for fractional differential equation integral boundary value problem at resonance [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 66-73. |
[14] | WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18. |
[15] | CUI Jian-bin, JI An-zhao, LU Hong-jiang, WANG Yu-feng, HE Jiang-yi, XU Tai. Numerical solution of Schwarz Christoffel transform [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 104-111. |