JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 46-49.doi: 10.6040/j.issn.1671-9352.0.2019.391

Previous Articles    

Strong new product preserving maps on *-algebras

ZHANG Fang-juan   

  1. School of Science, Xian University of Posts and Telecommunications, Xian 710121, Shaanxi, China
  • Published:2019-12-11

Abstract: Let R be a unital *-algebra with a nontrivial symmetric idempotent P which satisfies:(1)ARP={0} implies A=0;(2)AR(I-P)={0} implies A=0. Let φ:R→R be a surjective map. Then φ is strong new product preserving if and only if there exists an element Z∈ZS(R)with Z2=I such that φ(X)=ZX for all X∈R. As an application, a characterization of strong new product preserving on von Neumann algebras with no central summands of type I1 and prime *-ring are obtained.

Key words: new product, preserving map, *-algebra

CLC Number: 

  • O177.1
[1] ŠEMRL P. Quadratic functionals and Jordan *-derivations[J]. Studia Mathematica, 1991, 97(3):157-165.
[2] ŠEMRL P. On Jordan *-derivations and an application[J]. Colloquium Mathematicum, 1990, 59(2):241-251.
[3] MOLNÁR L. A condition for a subspace of B(H) to be an ideal[J]. Linear Algebra and Its Applications, 1996, 235:229-234.
[4] BREŠAR M, FOSNER M. On rings with involution equipped with some new product[J]. Publications Mathematicae-Debrecen, 2000, 57(1/2):121-134.
[5] CHEBOTAR M A, FONG Y, LEE P-H. On maps preserving zeros of the polynomial xy-yx*[J]. Linear Algebra and Its Applications, 2005, 408:230-243.
[6] CUI Jianlian, PARK C. Maps preserving strong skew Lie product on factor von Neumann algebras[J]. Acta Mathematica Scientia Series B, 2012, 32(2):531-538.
[7] LI Changing, CHEN Quanyuan. Strong skew commutativity preserving maps on rings with involution[J]. Linear Algebra and Its Applications, 2016, 32(6):745-752.
[8] HOU Jinchuan, WANG Wei. Strong 2-skew commutativity preserving maps on prime rings with involution[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(1):33-49.
[9] LIN J S, LIU C K. Strong commutativity preserving maps in prime rings with involution[J]. Linear Algebra and Its Applications, 2010, 432(1):14-23.
[10] QI Xiaofei, HOU Jinchuan. Strong skew commutativity preserving maps on von Neumann algebras[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):362-370.
[11] BAI Zhaofang, DU Shuanping. Strong commutativity preserving maps on rings[J]. Rocky Mountain Journal of Mathematics, 2014, 44(3):733-742.
[12] KADISON R V, RINGROSE J R. Fundamentals of the theory of operator algebras: Vol. I[M]. New York: Academic Press, 1983.
[13] KADISON R V, RINGROSE J R. Fundamentals of the theory of operator algebras: Vol. II[M]. New York: Academic Press, 1986.
[14] ARA P. The extended centroid of C*-algebras[J]. Archiv Der Mathematik, 1990, 54(4):358-364.
[1] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
[2] ZHANG Fangjuan. Nonlinear strong *- commutativity preserving maps on prime *-rings [J]. J4, 2011, 46(6): 67-69.
[3] WU Shu-xia, LIU Xiao-ji*. Reverse order laws for generalized inverse in C*-algebras [J]. J4, 2011, 46(4): 82-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!