JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (6): 64-75.doi: 10.6040/j.issn.1671-9352.0.2019.459
MENG Xi-wang, WANG Juan
CLC Number:
[1] LAI Ningan, ZHOU Yi. The sharp lifespan extimate for semilinear damped wave equation with Fujita critical power in higher dimensions[J]. J Math Pures Appl, 2019, 123:229-243. [2] EINSTEIN A. Kosmologische Betrachtungen zur allgemeinen Relativitästheorie[M]. Berlin: Sitzungsber Preuss Akad Wiss, 1917. [3] DE SITTER W. On Einsteins theory of gravitation and its astronomical consequences(Ⅱ)[J]. Monthly Not Roy Astr Soc, 1917, 77(2):155-184. [4] DE SITTER W. On Einsteins theory of gravitation and its astronomical consequences(Ⅲ)[J]. Monthly Not Roy Astr Soc, 1917, 78(1):3-28. [5] HAWKING S W, ELLIS G F R. The large scale structure of space-time[M]. New York: Cambridge University Press, 1973. [6] RENDALL A D. Asymptotics of solutions of the Einstein equations with positive cosmological constant[J]. Ann Henri Poincaré, 2004, 5(6):1041-1064. [7] COLOMBINI F, SPAGNOLO S. An example of a weakly hyperbolic Cauchy problem not well posed in C∞[J]. Acta Math, 1982, 148(1):243-253. [8] COLOMBINI F, GIORGI E D, SPAGNOLO S. Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps[J]. Ann Scuola Norm Sup Pisa Cl Sci, 1979, 6(3):511-559. [9] YAGDJIAN K, GALSTIAN A. Fundamental solutions for the Klein-Gordon equation in de Sitter spacetime[J]. Comm Math Phys, 2009, 285(1):293-344. [10] YAGDJIAN K. The semilinear Klein-Gordon equation in de Sitter spacetime[J]. Discrete Contin Dyn Syst Ser S, 2009, 2(3):679-696. [11] YAGDJIAN K. On the global solutions of the Higgs boson equation[J]. Comm Partial Differential Equations, 2012, 37(3):447-478. [12] YAGDJIAN K. Global existence of the scalar field in de Sitter spacetime[J]. J Math Anal Appl, 2012, 396(1):323-344. [13] YAGDJIAN K. Integral transform approach to solving Klein-Gordon equation with variable coefficients[J]. Math Nachr, 2015, 288(17/18):2129-2152. [14] GALSTIAN A, YAGDJIAN K. Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes[J]. Nonlinear Anal, 2015, 113:339-356. [15] EBERT M R, REISSIG M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity[J]. Nonlinear Anal Real World Appl, 2018, 40:14-54. [16] PALMIERI A, REISSIG M. A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass[J]. J Differential Equations, 2019, 266(2/3):1176-1220. [17] LI Daqian, ZHOU Yi. Breakdown of solutions to □u+ut=|u|1+α[J]. Discrete Contin Dyn Syst, 1995, 1(4):503-502. |
[1] | FANG Gang, LUAN Xi-wu, FANG Jian-hui. Hamiltonian canonical equations of elastic medium and symplectic geometric algorithm of acoustic wave equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 99-106. |
[2] | ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28-35. |
[3] | LV Hai-Ling, LIU Xi-Qiang, NIU Lei. A generalized [G′/G]expansion method and its applications in nonlinear mathematical physics equations [J]. J4, 2010, 45(4): 100-105. |
[4] | LU Qiu-ci1, ZENG You-dong2. The semi-infinite problems of the solutions for a system of nonlocal wave equations [J]. J4, 2010, 45(10): 104-108. |
[5] | TIAN Min and YANG Dan-ping . Overlapping domain decomposition parallel finite difference algorithm of wave equation [J]. J4, 2007, 42(2): 28-38 . |
|