JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (8): 98-101.doi: 10.6040/j.issn.1671-9352.0.2019.508

Previous Articles    

(*)-Good congruences on superabundant semigroups

GONG Chun-mei, WANG Hui, WU Dan-dan   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2020-07-14

Abstract: The characterizations of(*)-good congruence on superabundant semigroups are studied by means of(*)-Greens relation and the properties of superabundant semigroups. The sufficient and necessary condition that any two elements on a superabundant semigroup S are in the same(*)-good congruence class is given and the description of any congruence contained in D * on S is obtained.

Key words: (*)-Greens relation, superabundant semigroup, (*)-good congruence

CLC Number: 

  • O152.7
[1] REN Xueming, SHUM Karping. The structure of superabundant semigroups[J]. Science in China(Series A), 2004, 47(5):756-771.
[2] PETRICH M. Congruences on completely regular semigroups[J]. Canadian Journal of Mathematics, 1989, 41(3):439-461.
[3] 郭聿琦, 宫春梅, 孔祥智. 正则纯正左消幺半群并半群上的(*,~)-好同余[J]. 代数集刊, 2014, 21(2):235-248. GUO Yuqi, GONG Chunmei, KONG Xiangzhi.(*,~)-good congruences on regular ortho-lc-monoids[J]. Algebra Colloquium, 2014, 21(2):235-248.
[4] 宫春梅, 任学明, 袁莹. 正规纯正左消幺半群并半群上的(*,~)-好同余[J]. 数学进展, 2015, 44(3):369-378. GONG Chunmei, REN Xueming, YUAN Ying. The(*,~)-good congruences on normal ortho-lc-monoids[J]. Adavances in Mathematics(China), 2015, 44(3):369-378.
[5] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: Oxford Science Publications, 1995.
[6] LAWSON M V. Ress matrix semigroups[J]. Edinburgh Mathematical Society, 1990, 33:23-27.
[7] FOUNTAIN J B. Abundant semigroups[J]. Proceedings of the London Mathematical Society, 1982, 44(3):103-129.
[1] LIU Kai-Zhen, KONG Xiang-Zhi. The structure of semi-superabundant semigroups [J]. J4, 2010, 45(1): 86-88.
Full text



No Suggested Reading articles found!