JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (6): 23-31.doi: 10.6040/j.issn.1671-9352.0.2019.655
SHI Jia, WANG Cai-shi, ZHANG Li-xia, ZHANG Yin
CLC Number:
[1] HIDA T, KUO H H, POTTHOFF J, et al. White noise: an infinite dimensional calculus[M]. Dordrecht: Kluwer Academic Publisher, 1993. [2] HUANG Zhiyuan, YAN Jiaan. Introduction to infinite dimensional stochastic analysis[M]. Dordrecht: Kluwer Academic Publisher, 1999. [3] ÉMERY M. A discrete approach to the chaotic representation property[J]. Séminaire de Probabilités XXXV, 2001, 1755:123-138. [4] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5(1):435-483. [5] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654. [6] WANG Caishi, CHEN Jinshu. Characterization theorems for generalized functionals of discrete-time normal martingale[J/OL]. Journal of Function Spaces, 2015[2019-08-02]. http://dx.doi.org/10.1155/2015/714745. [7] 宁克标. 白噪声分析中的Bochner-Wick积分[J]. 应用概率统计, 1996, 12(2):239-246. NING Kebiao. Bochner-Wick integral in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 1996, 20(2):239-246. [8] 韩琦. 白噪声分析中广义算子值函数的Bochner-Wick积分[J]. 应用概率统计, 2014, 30(3):244-256. HAN Qi. Bochner-Wick integral of generalized operator valued function in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(3):244-256. [9] 陈金淑. B-值广义泛函值函数的 Bochner-Wick 积分[J]. 兰州理工大学学报, 2012, 38(4):136-139. CHEN Jinshu. Bochner-Wick integrals of functions valued in B-valued generalized functionals[J]. Journal of Lanzhou University of Technology, 2012, 38(4):136-139. [10] WANG Caishi, ZHANG Jihong. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013, 54(10):23-278. [11] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J/OL]. Journal of Function Spaces, 2014[2019-08-02]. http://dx.doi.org/10.1155/2014/727341. [12] BECNEL J J. Equivalence of topologies and borel fields for countably-Hilbert spaces[J]. Proceedings of the American Mathematical Society, 2006, 134(2):581-590. [13] GELFAND I M, SHILOV G E. Spaces of fundamental and generalized functions[M]. New York: Academic Press, 1968. [14] 夏道行, 严绍宗, 舒五昌,等. 泛函分析第二教程[M]. 北京:高等教育出版社, 1987. XIA Daoxing, YAN Shaozong, SHU Wuchang, et al. An advanced course in functional analysis[M]. Beijing: Higher Education Press, 1987. [15] DIESTEL J, UHL J J, Jr. Vector measure[M] // Mathematics Surveys: Vol 15. Providence, Rhode Island: American Mathematical Society, 1977. [16] WANG Caishi, CHEN Jinshu. Convergence theorems for generalized functional sequences of discrete-time normal martingales[J/OL]. Journal of Function Spaces, 2015 [2019-08-02]. http://dx.doi.org/10.1155/2015/360679. |
|