JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (6): 23-31.doi: 10.6040/j.issn.1671-9352.0.2019.655

Previous Articles    

Bochner-Wick integral for S *(M)space

SHI Jia, WANG Cai-shi, ZHANG Li-xia, ZHANG Yin   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

Abstract: Let S *(M)be a generalized functional space of discrete-time normal martingale M. This paper introduces and discusses the integral operation of S *(M)-valued measure and S *(M)-valued function in the framework of Bernoulli noise analysis. First of all, the concept of S *(M)-valued measure is defined. On this basis, this paper deeply investigates the properties of S *(M)-valued measure by Fock transform, and obtains the appropriate conditions for the countably additive of this kind of measure in the sense of norm. Next, Bochner-Wick integral for S *(M)-valued function with respect to S *(M)-valued measure is defined and the corresponding control convergence theorem is established.

Key words: discrete-time normal martingale, Fock transform, Bochner-Wick integral, vector measure

CLC Number: 

  • O211.63
[1] HIDA T, KUO H H, POTTHOFF J, et al. White noise: an infinite dimensional calculus[M]. Dordrecht: Kluwer Academic Publisher, 1993.
[2] HUANG Zhiyuan, YAN Jiaan. Introduction to infinite dimensional stochastic analysis[M]. Dordrecht: Kluwer Academic Publisher, 1999.
[3] ÉMERY M. A discrete approach to the chaotic representation property[J]. Séminaire de Probabilités XXXV, 2001, 1755:123-138.
[4] PRIVAULT N. Stochastic analysis of Bernoulli processes[J]. Probability Surveys, 2008, 5(1):435-483.
[5] WANG Caishi, LU Yanchun, CHAI Huifang. An alternative approach to Privaults discrete-time chaotic calculus[J]. Journal of Mathematical Analysis and Applications, 2011, 373(2):643-654.
[6] WANG Caishi, CHEN Jinshu. Characterization theorems for generalized functionals of discrete-time normal martingale[J/OL]. Journal of Function Spaces, 2015[2019-08-02]. http://dx.doi.org/10.1155/2015/714745.
[7] 宁克标. 白噪声分析中的Bochner-Wick积分[J]. 应用概率统计, 1996, 12(2):239-246. NING Kebiao. Bochner-Wick integral in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 1996, 20(2):239-246.
[8] 韩琦. 白噪声分析中广义算子值函数的Bochner-Wick积分[J]. 应用概率统计, 2014, 30(3):244-256. HAN Qi. Bochner-Wick integral of generalized operator valued function in white noise analysis[J]. Chinese Journal of Applied Probability and Statistics, 2014, 30(3):244-256.
[9] 陈金淑. B-值广义泛函值函数的 Bochner-Wick 积分[J]. 兰州理工大学学报, 2012, 38(4):136-139. CHEN Jinshu. Bochner-Wick integrals of functions valued in B-valued generalized functionals[J]. Journal of Lanzhou University of Technology, 2012, 38(4):136-139.
[10] WANG Caishi, ZHANG Jihong. Localization of quantum Bernoulli noises[J]. Journal of Mathematical Physics, 2013, 54(10):23-278.
[11] WANG Caishi, ZHANG Jihong. Wick analysis for Bernoulli noise functionals[J/OL]. Journal of Function Spaces, 2014[2019-08-02]. http://dx.doi.org/10.1155/2014/727341.
[12] BECNEL J J. Equivalence of topologies and borel fields for countably-Hilbert spaces[J]. Proceedings of the American Mathematical Society, 2006, 134(2):581-590.
[13] GELFAND I M, SHILOV G E. Spaces of fundamental and generalized functions[M]. New York: Academic Press, 1968.
[14] 夏道行, 严绍宗, 舒五昌,等. 泛函分析第二教程[M]. 北京:高等教育出版社, 1987. XIA Daoxing, YAN Shaozong, SHU Wuchang, et al. An advanced course in functional analysis[M]. Beijing: Higher Education Press, 1987.
[15] DIESTEL J, UHL J J, Jr. Vector measure[M] // Mathematics Surveys: Vol 15. Providence, Rhode Island: American Mathematical Society, 1977.
[16] WANG Caishi, CHEN Jinshu. Convergence theorems for generalized functional sequences of discrete-time normal martingales[J/OL]. Journal of Function Spaces, 2015 [2019-08-02]. http://dx.doi.org/10.1155/2015/360679.
[1] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[2] ZHANG Ya-juan, LYU Yan. Approximation of stochastic vibration equations with variable damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 59-65.
[3] CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88.
[4] ZHANG Chun-yan, HAO Sheng-nan, FENG Li-chao. Stochastic suppression on explosive solutions of a class of nonlinear impulsive differential systems by noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 29-36.
[5] FANG Rui, MA Jiao-jiao, FAN Sheng-jun. A stability theorem for solutions of a class of backward stochastic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 39-44.
[6] WANG Chun-sheng, LI Yong-ming. Stability of neutral stochastic differential equations with some variable delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 82-87.
[7] HUANG Zong-Yuan, ZHANG Feng. Viscosity solutions of multidimensional quasilinear parabolic PDEs [J]. J4, 2008, 43(12): 5-9.
[8] LI Zhi-tao,WANG Gang-chen and MU Chao . The local necessary condition for a type of stochastic optimal control problem and its application to a portfolio choice problem [J]. J4, 2007, 42(6): 7-11 .
[9] HAN Bao-yan,ZHU Bo and SHI Yu-feng . The limitation theorem of g-supersolution for BSDEs under non-Lipschitzian coefficient [J]. J4, 2007, 42(1): 8-13 .
[10] ZHANG Hui,NIE Xiu-shan . Minimal pricing models of European stock options under Knight uncertainty [J]. J4, 2007, 42(11): 121-126 .
[11] WANG Guang-chen . LQ nonzero sum stochastic differential game under partial observable information [J]. J4, 2007, 42(6): 12-15 .
[12] YANG Wei-qiang and YANG Li . Nonparametric estimation and simulation of backward stochastic differential equation [J]. J4, 2006, 41(2): 34-38 .
[13] LIN Qian,SHI Yu-feng . Convergence theorems for generalized g-expectations [J]. J4, 2008, 43(6): 28-30 .
[14] WANG Ying and HUANG Zhen . Adapted solution of a backward stochastic evolution equation with nonLipschitz coefficients [J]. J4, 2007, 42(6): 22-26 .
[15] XIAO Hua . Continuous dependence of the solution of multidimensional reflected backward stochastic differential equations on the parameters [J]. J4, 2007, 42(2): 68-71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!