JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (6): 41-47.doi: 10.6040/j.issn.1671-9352.0.2019.757

Previous Articles    

Existence of solutions to initial value problems of fractional differential equations of variable-order

AN Jia-hui, CHEN Peng-yu*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2020-06-01

Abstract: By using Schauder fixed point theorem, this paper obtains the existence of solution for the following initial value problem of fractional differential equations of variable-order{Dq(t)0+ x(t)=f(t,x), 00)=0,where 01, 0, Dq(t)0+ is the fractional derivative of Riemann-Liouvile of variable-order q(t).

Key words: derivative and integral of variable order, initial value problem, Schauder fixed point theorem, completely continuous operator

CLC Number: 

  • O175.8
[1] KILBAS A A, SRIVASTAVE H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Besloten Vennootschap, 2006.
[2] LAKSHMIKANTHAN V, VATSALA A S. Basic theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69(8):2677-2682.
[3] AGARWAL R P, BENCHOHRA M, HAMZNI S. Boundary value problems for fractional differential equations[J]. Georgian Mathematical Journal, 2009, 16(3):401-411.
[4] SU Xinwei. Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22(1):64-69.
[5] ZHANG Shuqin. The existence of a positive solution for a nonlinear fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2000, 252(2):804-812.
[6] MCRAE F A. Monotone iterative technique and results for fractional differential equations[J]. Nonlinear Analysis, 2009, 71(12):6093-6096.
[7] YU Cheng, GAO Guozhu. Existence of fractional differential equations[J]. Journal of Mathematical Analysis and Applications, 2005, 31(1):26-29.
[8] DENG J Q, MA L F. Existence and uniqueness of solutions of initial value problems for uniqueness fractional differential equations[J]. Applied Mathematics Letters, 2010, 23(6):676-680.
[9] VALÉRIO D, COSTA J S. Variable-order fractional derivatives and their numerical approximations[J]. Signal Processing, 2011, 91(3):470-483.
[10] LORENZOS C F, HARTIEY T T. Variable order and distributed order fractional operators[J]. Nonlinear Dynamics, 2002, 29(4):57-98.
[11] SUN H G, CHEN W, WEI H, et al. Variable-order fractional differential operators in anomalous diffusion modeling[J]. Statistical Mechanics and its Applications, 2009, 388(21):4586-4592.
[12] TSENG C C. Design of variable and adaptive fractional order FIR differentiators[J]. Signal Processing, 2006, 86(10):2554-2566.
[13] RAZMINIA A, DIZAJI A F, MAJD V J. Solution existence for non-autonomous variable-order fractional differential equations[J]. Mathematical and Computer Modelling, 2012, 55(3):1106-1117.
[14] LORENZO C F, HARTLEY T T. Variable order and distributed order fractional operators[J]. Nonlinear Dynamics, 2002, 29(4):57-98.
[15] ZHANG Shuqin. Exisitence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order[J]. Journal of Mathematical Analysis and Applications, 2013, 4(1):82-98.
[16] ZHANG Shuqin. The uniqueness result of solutions to initial value problems of differential equations of variable-order[J]. Rev R Acad Cienc Exactas Fís Nat Ser A Math, 2018, 112(2):407-423.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!