JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (12): 40-48.doi: 10.6040/j.issn.1671-9352.0.2020.228

Previous Articles    

Rota-Baxter operators on the Lie superalgebra S(2)

LU Zhi-ying, YUAN Ji-xia*   

  1. School of Mathematical Science, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Published:2020-12-01

Abstract: The Rota-Baxter operators of Lie superalgebra S(2)with weight zero are investigated. According to the property of isomorphism of S(2)0^- and sl(2,C), using the Rota-Baxter operators of sl(2,C), the even Rota-Baxter operators with weight zero on Lie superalgebra S(2)are given. At the same time, using the definition of the Rota-Baxter operator to calculate the odd Rota-Baxter operators with weight zero on Lie superalgebra S(2).

Key words: Lie superalgebra, Lie superalgebra S(2), Rota-Baxter operator

CLC Number: 

  • O152.5
[1] BAXTER G. An analytic problem whose solution follows from a simple algebraic identity[J]. Pacific Journal of Mathematics, 1960, 10(3):731-742.
[2] LI Xiuxian, HOU Dongping, BAI Chengming. Rota-Baxter operators on pre-Lie algebras[J]. Journal of Nonlinear Mathematical Physics, 2007, 14(2):269-289.
[3] AN Huihui, BAI Chengming. From Rota-Baxter algebras to pre-Lie algebras[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(1):201-219.
[4] 陈美微, 刘文德. 有限维实可除代数的Rota-Baxter算子[J]. 数学的实践与认识, 2013, 43(16):243-247. CHEN Meiwei, LIU Wende. Rote-Baxter operators on finite-dimensional real division algebras[J]. Mathematics in Practice and Ractice Theory, 2013, 43(16):243-247.
[5] 华秀英, 刘文德. 外代数上的Rota-Baxter算子[J]. 哈尔滨理工大学学报, 2013, 18(4):125-128. HUA Xiuying, LIU Wende. Rota-Baxter operators on exterior algebra[J]. Journal of Harbin Universrry of Science and Technology, 2013, 18(4):125-128.
[6] TANG Xiaomin, ZHANG Yang, SUN Qiong. Rota-Baxter operators on 4-dimensional complex simple associative algebras[J]. Applied Mathematics and Computation, 2014, 229(25):173-186.
[7] 范素军, 刘东艳, 吴艳茹, 等. 李代数的Rota-Baxter算子[J]. 河北师范大学学报(自然科学版), 2014, 38(6):541-544. FAN Sujun, LIU Dongyan, WU Yanru, et al. Rota-Baxter operators of Lie algebras[J]. Journal of Hebei Normal University(Natural Science Edition), 2014, 38(6):541-544.
[8] PEI Jun, BAI Chengming, GUO Li. Rota-Baxter operators on sl(2,C)and solutions of the classical Yang-Baxter equation[J]. Journal of Mathematical Physics, 2014, 55(2):1-17.
[9] ABDAOUI E-K, MABROUK S, MAKHLOUF A. Rota-Baxter operators on pre-Lie superalgebras[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42:1567-1606.
[10] 顾金剑, 刘文德. 三维幂零李超代数的Yang-Baxter算子[J]. 纯粹数学与应用数学, 2014, 30(3):307-313. GU Jinjian, LIU Wende. Yang-Baxter operators on the Lie superalgebras of dimension three[J]. Pure and Applied Mathematics, 2014, 30(3):307-313.
[11] 姜俨航. 两类三维李超代数上的Rota-Baxter算子[J]. 通化师范学院学报(自然科学), 2017, 38(6):29-31. JIANG Yanhang. Rota-Baxter operators on two types of three-dimensional Lie superalgebras[J]. Journal of Tonghua Normal University(Natural Science), 2017, 38(6):29-31.
[12] 潘美新, 刘文德. 四维线状李超代数具有权1的Rota-Baxter算子[J]. 数学的实践与认识, 2017, 47(9):268-275. PAN Meixin, LIU Wende. Rota-Baxter operators of weight 1 filiform Lie superalgebras of dimension four[J]. Mathematics in Practice and Ractice Theory, 2017, 47(9):268-275.
[13] 吕思琦, 刘文德. 五维Heisenberg李超代数的Rota-Baxter算子[J]. 数学的实践与认识, 2016, 46(20):248-258. LV Siqi, LIU Wende. Rota-Baxter operators on Heisenberg Lie superalgebras of dimension five[J]. Mathematics in Practice and Ractice Theory, 2016, 46(20):248-258.
[14] 冯田, 刘文德. 一般线性李超代数gl(1|1)上的Rota-Baxter算子[J]. 哈尔滨师范大学自然科学学报, 2013, 29(4):12-15. FENG Tian, LIU Wende. Rota-Baxter operators on general linear Lie superalgebra gl(1|1)[J]. Natural Sciences Journal of Harbin Normal University, 2013, 29(4):12-15.
[15] 张永正, 刘文德. 模李超代数[M]. 北京: 科学出版社, 2004: 1-191. ZHANG Yongzheng, LIU Wende. Modular Lie superalgebra[M]. Beijing: Science Press, 2004: 1-191.
[1] LI Fang-shu, LI Lin-han, ZHANG Liang-yun. Construction of 3-Leibniz algebras and their Rota-Baxter operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 48-53.
[2] ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!