JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 97-102.doi: 10.6040/j.issn.1671-9352.0.2020.234
HOU Chun-juan, LI Yuan-fei, GUO Lian-hong*
CLC Number:
[1] GILL A E. Atmosphere-ocean dynamics[M]. London: Academic Press, 1982. [2] MAJDA A. Introduction to PDEs and waves for the atmosphere and ocean[M]. New York: American Mathematical Society Press, 2003. [3] PEDLOSKY J. Geophysical fluid dyanmics[M]. New York: Springer-Verlag Press, 1987. [4] CHAE D, NAM H S. Local existence and blow-up criterion for the Boussinesq equations[J]. Proceeding of the Royal Society of Edinburgh Section A Mathematics, 1997, 127(5):935-946. [5] LIU Xiaofeng, WANG Meng, ZHANG Zhifei. Local well-posedness and blow-up criterion of the Boussinesq equations in critical besov spaces[J]. Journal of Mathematical Fluid Mechanics, 2010, 12(2):280-292. [6] LARIOS A, LUNASIN E, TITI E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion[J]. Journal of Differential Equations, 2013, 255(9):2636-2654. [7] WU Gang, ZHENG Xiaoxin. Golbal well-posedness for the two-domensional nonlinear Boussinesq equations with vertical dissipations[J]. Journal of Differential Equations, 2013, 255(9):2891-2926. [8] YAO Zhengan, WANG Qiru, BIE Junyi. On the well-posedness of the iniviscid Boussinesq equations in the Besov-Morrey spaces[J]. Kinetic Related Models, 2015, 8(3):395-411. [9] XIANG Zhaoyin, YAN Wei. Global regularity of solutions to the Boussinesq equations with fractional diffusion[J]. Advances in Differential Equations, 2013, 18(11/12):1105-1128. [10] YE Zhuan. A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation[J]. Acta Mathematica Scientia, 2015, 35(1):112-120. [11] YAMAZAKI K. On the global regularity of N dimensional generalized Boussinesq system[J]. Applications of Mathematics, 2015, 60(2):109-133. [12] CAO Chongsheng, WU Jiahong. Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation[J]. Archive for Rational Mechanics and Analysis, 2013, 208(3):985-1004. [13] ABIDI H, HMIDI T. On the global well-posedness for Boussinesq system[J]. Journal of Differential Equations, 2007, 233(1):199-220. [14] JIU Quansen, MIAO Changxing, WU Jiahong, et al. The 2D incompressible Boussinesq equations with general critical dissipation[J]. SIAM Journal of Mathematical Analysis, 2014, 46(5):3426-3454. [15] KUTEV N, KOLKOVSKA N, DIMOVA M. Global existence to generalized Boussinesq equation with combined power-type nonlinearities[J]. Journal of Mathematical Analysis and Applications, 2014, 410(1):427-444. [16] YE Zhuan, XU Xiaojing. Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation[J]. Journal of Differential Equations, 2016, 260(2):6716-6744. [17] 王艳萍, 郭柏灵. 一类广义Boussinesq型方程解的爆破[J]. 应用数学和力学, 2007, 28(11):1281-1286. WANG Yanping, GUO Boling. Blow-up of the solution for a generalized Boussinesq equation[J]. Applied Mathematics and Mechanics, 2007, 28(11):1281-1286. [18] EVANS L C. Partial differential equations[M]. Providence: American Mathematical Society Press, 1998. [19] MAJDA A J, BERTOZZI A L, ABLOWITZ M J. Vorticity and incompressible flow[M]. Cambrideg: Cambridge University Press, 2002. |
[1] | DING Feng-xia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 18-24. |
[2] | ZHANG Lu-yin, ZHANG Yu-hai, QIAN Kun-ming. On the iterated Tikhonov regularization for ill-posed problems [J]. J4, 2011, 46(4): 29-33. |
[3] | ZHU Guang-jun,ZHANG Yu-hai,ZHANG Chao . Linear two-step stationary iteration for solving Ill-posed problems [J]. J4, 2007, 42(10): 47-53 . |
|