JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 43-51.doi: 10.6040/j.issn.1671-9352.0.2020.466

Previous Articles    

Firing bifurcation characteristics and synchronization of Chay neuron under electromagnetic induction

GAO Yue-yue1, LI Xin-ying2*, LI Ning1   

  1. 1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-01-05

Abstract: According to Faraday law of electromagnetic induction, charged ions inside and outside the cell through the cell membrane to produce an electromagnetic induction effect, and a four-dimensional Chay neuron model is established by introducing magnetic flux on the basis of the Chay neuron model. Firstly, the equilibrium point and stability of the system are studied by Matcont simulation, and it is found that the system undergoes saddle-node bifurcation, supercritical Hopf bifurcation and subcritical Hopf bifurcation as the parameters change; secondly, the firing mode of the neuronal system is investigated by numerical simulation; finally, the coupled neurons and global connections are analyzed by electrical synaptic coupling, using statistics such as correlation coefficient and synchronization parameter. The synchronization problem of neuronal networks is further explored by the influence of multiple parameters on the synchronization process of neurons.

Key words: equilibrium point analysis, complete synchronization, correlation coefficient, synchronization parameter, two-parameter analysis

CLC Number: 

  • O193
[1] CHAY T R, KEIZER J. Minimal model for membrane oscillations in the pancreatic beta-cell[J]. Biophysical Journal, 1983, 42(2):181-189.
[2] DUAN Lixia, LU Qishao, WANG Qingyun. Two-parameter bifurcation analysis of firing activities in the Chay neuronal model[J]. Neurocomputer, 2008, 72(1/2/3):341-351.
[3] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Chaos synchronization of coupled neurons with gap junctions[J]. Physics Letters A, 2006, 356(1):17-25.
[4] 王青云. 神经元耦合系统同步动力学[M]. 北京: 科学出版社,2008. WANG Qingyun. Synchronization dynamics of coupled neuron system[M]. Beijing: Science Press, 2008.
[5] LV Mi, MA Jun, REN Guodong, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3):1479-1490.
[6] MONDAL A, UPADHYAY R K, MA J, et al. Bifurcation analysis and diverse firing activities of a modified excitable neuron model[J]. Cognitive Neurodynamics, 2019, 13(4):393-407.
[7] 于浩,肖晗,司芳源,等.磁流对神经元Chay模型放电模式的影响[J]. 生物物理学, 2017, 5(1):1-7. YU Hao, XIAO Han, SI Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect[J]. Biophysics, 2017, 5(1):1-7.
[8] WANG Haixia, WANG Qingyun, LU Qishao, et al. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction[J]. Cognitive Neurodynamics, 2013, 7(2):121-131.
[9] LV Mi, MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205(12):375-381.
[10] FAN Denggui, WANG Qingyun. Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J]. Science China Technological Sciences, 2017, 60(7):1019-1031.
[11] HAN F, LU Q S, WIERCIGROCH M, et al. Chaotic burst synchronization in heterogeneous small-world neuronal network with noise[J]. International Journal of Non-linear Mechanics, 2009, 44(3):298-303.
[12] 谭安杰,韦笃取,周倩,等.电磁场耦合忆阻神经元的相位同步与电路实现[J]. 中国科学: 技术科学, 2020, 50(2):175-182. TAN Anjie, WEI Duqu, ZHOU Qian, et al. Phase synchronization and circuit implementation of electromagnetic field coupled memristor neurons[J]. Scientia Sinica Technologica, 2020, 50(2):175-182.
[13] 袁春华.神经元动力学分析与放电特性的研究[D].天津:天津大学,2017. YUAN Chunhua. Dynamic analysis and firing properties of neurons[D]. Tianjin: Tianjin University, 2017.
[14] WANG Qingyun, DUAN Zhisheng, FENG Zhaosheng, et al. Synchronization transition in gap-junction-coupled leech neurons[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(16/17):4404-4410.
[15] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Ordered bursting synchronization and complex wave propagation in a ring neuronal network[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(2):869-878.
[1] DONG Xiang-zhong, GUAN Jie. Linear properties of the round function of SIMON family of block ciphers [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 49-54.
[2] WANG Ling-yin1, LIU Ju2. Time-frequency block interleaving schemes for PAPR reduction in OFDM systems [J]. J4, 2012, 47(11): 83-87.
[3] DU Ning,GUO Wei-hua,WU Da-qian,WANG Qi and WANG Ren-qing . Inter-specific relations of shrub and herbage species under a typical forest on Kunyu Mountain [J]. J4, 2007, 42(3): 71-77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!