JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 84-93.doi: 10.6040/j.issn.1671-9352.0.2021.065

Previous Articles    

A Bayesian approach for variable selection using spike-and-slab prior distribution

ZHANG Xian-you, LI Dong-xi*   

  1. College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Published:2021-11-25

Abstract: For ultra-high dimensional data, a Bayesian approach using a novel spike-and-slab prior for variable selection in high-dimensional linear regression models is presented. The proposed method aims to inherit the advantages of the elastic net and the EM algorithm to obtain sparse prediction models with faster convergence speed. Furthermore, a spike-and-slab setting of coefficients which allows for borrowing strength across coordinates, adjust to data sparsity information and exert multiplicity adjustment is proposed. Finally, the accuracy and efficiency of the proposed method are demonstrated via comparisons and analyses with common methods.

Key words: variable selection, high dimensional, spike-and-slab prior distribution, elastic net, sparse model

CLC Number: 

  • O212.1
[1] BÜHLMANN P, DRINEAS P, KANE M, et al. Handbook of big data[M]. New York: CRC Press, 2016.
[2] LEE K E, SHA N, DOUGHERTY E R, et al. Gene selection: a Bayesian variable selection approach[J]. Bioinformatics, 2003, 19(1):90-97.
[3] TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1):267-288.
[4] FAN Jianqing, LI Runze. Variable selection via nonconcave penalized likelihood and its Oracle properties[J]. Journal of the American Statistical Association, 2001, 96(456):1348-1360.
[5] ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society: Series B, 2005, 67(2):301-320.
[6] ZOU Hui. The adaptive Lasso and its oracle properties[J]. Journal of the American Statistical Association, 2006, 101(476):1418-1429.
[7] 曾津,周建军.高维数据变量选择方法综述[J].数理统计与管理,2017,36(4):678-692. ZENG Jin, ZHOU Jianjun. A review of variable selection methods for high dimensional data[J]. Journal of Applied Statistics and Management, 2017, 36(4):678-692.
[8] 王小燕,谢邦昌,马双鸽,等.高维数据下群组变量选择的惩罚方法综述[J].数理统计与管理, 2015, 34(6):978-988. WANG Xiaoyan, XIE Bangchang, MA Shuangge, et al. Summary of punishment methods for group variable selection under high dimensional data[J]. Journal of Applied Statistics and Management, 2015, 34(6):978-988.
[9] DONOHO D L, HUO X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 2001, 47(7):2845-2862.
[10] WANG H, LI G, TSAI C L. Regression coefficient and autoregressive order shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society: Series B, 2007, 69(1):63-78.
[11] PARK T, CASELLA G. The Bayesian Lasso[J]. Journal of the American Statistical Association, 2008, 103(482):681-686.
[12] ALHAMZAWI R, YU K, BENOIT D F. Bayesian adaptive Lasso quantile regression[J]. Statistical Modelling, 2012, 12(3):279-297.
[13] HUANG Anhui, XU Shizhong, CAI Xiaodong. Empirical Bayesian elastic net for multiple quantitative trait locus mapping[J]. Heredity, 2015, 114(1):107-115.
[14] FISHER C K, MEHTA P. Bayesian feature selection for high-dimensional linear regression via the ising approximation with applications to genomics[J]. Bioinformatics, 2015, 31(11):1754-1761.
[15] GEORGE E I, MCCULLOCH R E. Variable selection via Gibbs sampling[J]. Journal of the American Statistical Association, 1993, 88(423):881-889.
[16] ROCKOVA V, GEORGE E I. The spike-and-slab Lasso[J]. Journal of the American Statistical Association, 2018, 113(521):431-444.
[17] UEDA N, NAKANO R. Deterministic annealing EM algorithm[J]. Neural Networks, 1998, 11(2):271-282.
[18] JOHNSON R W. Fitting percentage of body fat to simple body measurements[J]. Journal of Statistics Education, 1996, 4(1):265-266.
[19] LENG C, TRAN M N, NOTT D. Bayesian adaptive Lasso[J]. Annals of the Institute of Statistical Mathematics, 2014, 66(2):221-244.
[1] WANG Xiu-li. Variable selection based on DP algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 81-86.
[2] GAN Xin-jun, YANG Wei-qiang. Weight of evidence method and credit risk control [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 55-59.
[3] LI Feng1, LU Yi-qiang2. Asymptotics for the LASSO estimator for partially linear models [J]. J4, 2012, 47(3): 93-97.
[4] WANG Shu-yun1, SONG Yun-sheng2. Bayesian variable selection based on AIC criteria in linear models [J]. J4, 2010, 45(6): 43-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!