JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (7): 1-10.doi: 10.6040/j.issn.1671-9352.0.2021.151
SHI Da1, YU Miao-chuan2*, LI Meng-qi2
CLC Number:
[1] 王婧虹,李银胜. 基于人性化用户特征的在线酒店推荐技术研究[J].计算机应用与软件,2019,36(2):113-119. WANG Jinghong, LI Yinsheng. A humanized user features approach for hotel recommendation[J]. Computer Applications and Software, 2019, 36(2):113-119. [2] 李贵,王爽,李征宇,等. 基于张量分解的个性化标签推荐算法[J]. 计算机科学, 2015, 42(2):267-273. LI Gui, WANG Shuang, LI Zhengyu, et al. Personalized tag recommendation algorithm based on tensor decomposition[J]. Computer Science, 2015, 42(2):267-273. [3] 王晓耘,赵菁, 徐作宁.基于社会化标注的用户兴趣发现及个性化推荐研究[J].现代情报, 2018, 38(7):67-73. WANG Xiaoyun, ZHAO Jing, XU Zuoning. Research on user interest mining and personalized recommendation based on socialized annotation[J]. Journal of Modern Information, 2018, 38(7):67-73. [4] 刘平峰, 聂规划, 陈冬林. 电子商务推荐系统研究综述[J]. 情报杂志, 2007(9):46-50. LIU Pingfeng, NIE Guihua, CHEN Donglin. A survey: electronic commerce recommender systems[J]. Journal of Intelligence, 2007(9):46-50. [5] 许海玲, 吴潇, 李晓东, 等. 互联网推荐系统比较研究[J]. 软件学报, 2009, 20(2):350-362. XU Hailing, WU Xiao, LI Xiaodong, et al. Comparison study of internet recommendation system[J]. Journal of Software, 2009, 20(2):350-362. [6] XIONG Y N, GENG L X. Research on personalized recommendation model based on dynamic interestingness for online hotel reservation [C] //2010 International Conference on Internet Technology and Applications. Piscataway: IEEE, 2010: 1-5. [7] 高虎明,李伟丽. 基于协同过滤和 Rankboost 算法的酒店推荐系统[J]. 微计算机信息, 2010, 26(36):206-208. GAO Huming, LI Weili. Hotel recommendation system based on collaborative filtering and Rankboost algorithm[J]. Microcomputer Information, 2010, 26(36):206-208. [8] 冷亚军,陆青,梁昌勇. 协同过滤推荐技术综述[J].模式识别与人工智能, 2014, 27(8):720-734. LENG Yajun, LU Qing, LIANG Changyong. Survey of recommendation based on collaborative filtering[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(8):720-734. [9] 邓晓懿,金淳,韩庆平. 基于情境聚类和用户评级的协同过滤推荐模型[J]. 系统工程理论与实践, 2013, 33(11):2945-2953. DENG Xiaoyi, JIN Chun, HAN Qingping. Improved collaborative filtering model based on context clustering and user ranking[J]. Systems Engineering-Theory & Practice, 2013, 33(11):2945-2953. [10] 孙小华. 协同过滤系统的稀疏性与冷启动问题研究[D].杭州:浙江大学, 2005. SUN Xiaohua. Research of sparsity and cold start problem in collaborative filtering[D]. Hangzhou: Zhejiang University, 2005. [11] 邓爱林, 朱扬勇, 施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003, 14(9):1621-1628. DENG Ailin, ZHU Yangyong, SHI Bole. A collaborative filtering recommendation algorithm based on item rating prediction[J]. Journal of Software, 2003, 14(9):1621-1628. [12] DAVIDSON J, LIEBALD B, LIU J, et al. The You Tube video recommendation system[C] //2010 ACM Conference on Recommender Systems. New York: ACM, 2010: 293-296. [13] SMITH B, LINDEN G. Two decades of recommender systems at Amazon. com[J]. IEEE Internet Computing, 2017, 21(3):12-18. [14] GOLDBERG D, NIEHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70. [15] SHARMA Y, BHATT J, MAGON R. A multi-criteria review-based hotel recommendation system[C] //2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing. Piscataway: IEEE, 2015: 687-691. [16] TAKUMA K, YAMAMOTO J, KAMEI S, et al. A hotel recommendation system based on reviews: what do you attach importance to? [C] // Fourth International Symposium on Computing and NETWORKING. Piscataway: IEEE, 2017: 710-712. [17] 杨辰,刘婷婷, 刘雷, 等. 融合语义和社交特征的电子文献资源推荐方法研究[J]. 情报学报, 2019, 38(6):632-640. YANG Chen, LIU Tingting, LIU Lei, et al. A novel recommendation approach of electronic literature resources combining semantic and social features[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(6):632-640. [18] 刘建国,周涛,郭强,等.个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009,6(3):1-10. LIU Jianguo, ZHOU Tao, GUO Qiang, et al. Overview of the evaluated algorithms for the personal recommendation systems[J]. Complex Systems and Complexity Science, 2009, 6(3):1-10. [19] 李航. 统计学习方法[M].北京: 清华大学出版社,2012:47-52. Li Hang. Statistical learning methods[M]. Beijing: Tsinghua University Press, 2012: 47-52. [20] 周志华. 机器学习[M].北京: 清华大学出版社, 2016:225-226. ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 225-226. [21] CHEN T, GUESTRIN C. Xgboost: A scalable tree boosting system[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. [22] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140. [23] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. [24] GOMEZ-URIBE C A, HUNT N. The netflix recommender system: algorithms, business value, and innovation[J]. ACM Transactions on Management Information Systems(TMIS), 2016, 6(4):1-19. |
[1] | ZHENG Li-ping, HU Min-jie, YANG Hong-he, LIN Yao-jin. Research on collaborative filtering algorithm based on rough set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 41-50. |
[2] | YANG Zhen, SI Shu-yong, LI Chao-yang. Information recommendation based on users interest model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 15-22. |
[3] | QI Li-li, SUN Jing-yu*, CHEN Jun-jie. Mean model based IBCF algorithm [J]. J4, 2013, 48(11): 105-110. |
[4] | LIU Jian1, YIN Chun-xia 2*, YUAN Fu-yong3. A collaborative filtering recommendation mechanism based on user profile in unstructured P2P networks [J]. J4, 2011, 46(5): 28-33. |
|