JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 100-110.doi: 10.6040/j.issn.1671-9352.0.2021.179
LYU Ning
CLC Number:
[1] AGARWAL Ravi, HRISTOVA Snezhana, OREGAN Donal. Non-instantaneous impulses in differential equations[M]. Cham: Springer, 2017: 1-72. [2] 高淑京,陈兰荪.具有生育脉冲的单种群阶段结构离散模型复杂性分析[J].大连理工大学学报,2006,46(4):611-614. GAO Shujing, CHEN Lansun. Analyses of complexities in a single-species discrete model with stage structure and birth pulses[J]. Journal of Dalian University of Technology, 2006, 46(4):611-614. [3] BENCHOHRA Mouffak, HENDERSON Johnny, NTOUYAS Sotiris. Impulsive differential equations and inclusions[M]. New York: Hindawi Publishing Corporation, 2006. [4] BAINOV D D, COVACHEV V. Impulsive differential equations with a small parameter[M]. Singapore: World Scientific, 1994. [5] FREIRE J G, CABEZA C, MARTI A C, et al. Self-organization of antiperiodic oscillations[J]. The European Physical Journal Special Topics, 2014, 223(13):2857-2867. [6] FREIRE J G, GALLAS J A C. Cyclic organization of stable periodic and chaotic pulsations in Hartleys oscillator[J]. Chaos, Solitons & Fractals, 2014, 59:129-134. [7] BARRIO R, BLESA F, SERRANO S. Topological changes in periodicity hubs of dissipative systems[J]. Physical Review Letters, 2012, 108(21):214102. [8] GALLAS J A C. Periodic oscillations of the forced Brusselator[J]. Modern Physics Letters B, 2015, 29(35/36):1530018. [9] RAO X B, CHU Y D, CHANG Y X, et al. Dynamics of a cracked rotor system with oil-film force in parameter space[J]. Nonlinear Dynamics, 2017, 88(4):2347-2357. [10] HEGEDÜS F. Topological analysis of the periodic structures in a harmonically driven bubble oscillator near Blakes critical threshold: infinite sequence of two-sided Farey ordering trees[J]. Physics Letters A, 2016, 380(9/10):1012-1022. [11] RECH P C. Organization of the periodicity in the parameter-space of a glycolysis discrete-time mathematical model[J]. Journal of Mathematical Chemistry, 2019, 57(2):632-637. [12] RECH P C. Nonlinear dynamics of two discrete-time versions of the continuous-time Brusselator model[J]. International Journal of Bifurcation and Chaos, 2019, 29(10):1950142. [13] OLIVEIRA D F M, ROBNIK M, LEONEL E D. Shrimp-shape domains in a dissipative kicked rotator[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2011, 21(4):043122. [14] LAYEK G C, PATI N C. Organized structures of two bidirectionally coupled logistic maps[J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2019, 29(9):093104. [15] FREIRE J G, MEUCCI R, ARECCHI F T, et al. Self-organization of pulsing and bursting in a CO2 laser with opto-electronic feedback[J]. Chaos(Woodbury, N Y), 2015, 25(9):097607. [16] FREIRE J G, GALLAS M R, GALLAS J A C. Chaos-free oscillations[J]. EPL(Europhysics Letters), 2017, 118(3):38003. [17] TANG S Y, CHEN L S. Density-dependent birth rate, birth pulses and their population dynamic consequences[J]. Journal of Mathematical Biology, 2002, 44(2):185-199. [18] MA Y, LIU B, FENG W. Dynamics of a birth-pulse single-species model with restricted toxin input and pulse harvesting[J]. Discrete Dynamics in Nature and Society, 2010, 2010:142534. [19] TAO F, LIU B. Dynamic behaviors of a single-species population model with birth pulses in a polluted environment[J]. Rocky Mountain Journal of Mathematics, 2008, 38(5):1663-1684. [20] GAO S, CHEN L, SUN L. Optimal pulse fishing policy in stage-structured models with birth pulses[J]. Chaos, Solitons & Fractals, 2005, 25(5):1209-1219. [21] BIER M, BOUNTIS T C. Remerging Feigenbaum trees in dynamical systems[J]. Physics Letters A, 1984, 104(5): 239-244. [22] DAWSON S P, GREBOGI C, YORKE J A, et al. Antimonotonicity: inevitable reversals of period-doubling cascades[J]. Physics Letters A, 1992, 162(3):249-254. [23] 陈式刚.圆映射[M].上海:上海科技教育出版社,1998. CHEN Shigang. Circle maps[M]. Shanghai: Shanghai Science and Technology Education Publishing House, 1998. [24] BATES B, BUNDER M, TOGNETTI K. Locating terms in the Stern-Brocot tree[J]. European Journal of Combinatorics, 2010, 31(3):1020-1033. [25] 饶晓波. 基于GPU并行计算的旋转机械系统动力学参数关联关系研究[D].兰州:兰州交通大学,2018. RAO Xiaobo. The study of parameters incidence relation about the dynamics in rotary machine system based on the GPU parallel computation[D]. Lanzhou: Lanzhou Jiaotong University, 2018. [26] GRAHAM R L, KNUTH D E, PATASHNIK O, et al. Concrete mathematics: a foundation for computer science[J]. Computers in Physics, 1989, 3(5):106-107. [27] BACKHOUSE R, FERREIRA J F. On Euclid’s algorithm and elementary number theory[J]. Science of Computer Programming, 2011, 76(3):160-180. [28] RAO X B, ZHAO X P, CHU Y D, et al. The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: infinite cascade of Stern-Brocot sum trees[J]. Chaos, Solitons & Fractals, 2020, 139:110031. [29] RAO X B, CHU Y D, ZHANG J G, et al. Complex mode-locking oscillations and Stern-Brocot derivation tree in a CSTR reaction with impulsive perturbations[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(11):113117. [30] MASELKO J, SWINNEY H L. A complex transition sequence in the Belousov-Zhabotinskii reaction[J]. Physica Scripta, 1985, T9:35-39. |
[1] | ZHU Yan-lan, ZHOU Wei, CHU Tong, LI Wen-na. Complex dynamic analysis of the duopoly game under management delegation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 32-45. |
[2] | HU Yong-liang, LUO Zhi-xue, LIANG Li-yu, FENG Yu-xing. Analysis of a stochastic single population system with age-dependent and diffusion in a polluted environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 62-68. |
[3] | CAO Hui-rong , ZHOU Wei, CHU Tong, ZHOU Jie. Dynamic analysis of Bertrand game model about taxation of government and subsidy [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 52-62. |
[4] | LU Zheng-yu, ZHOU Wei, YU Huan-huan, ZHAO Na. Dynamic analysis of game model considering advertising spillover effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 63-70. |
[5] | ZHANG Jing, XUE Leng, CUI Yi, RONG Hui, WANG Jian-ping. Modeling and evaluation of a dual chaotic encryption algorithm for WSN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 1-5. |
[6] | ZHOU Yan1,2, LIU Pei-yu 1,2, ZHAO Jing1,2, WANG Qian-long1,2. Chaos particle swarm optimization based on the adaptive inertia weight [J]. J4, 2012, 47(3): 27-32. |
[7] | JU Pei-jun. Sufficient and necessary conditions for global stability of generalized Lorenz system and its applications to chaos control [J]. J4, 2012, 47(10): 97-101. |
[8] | ZHU Cong-xu1, SUN Ke-hui2. A chaos synchronization secure communication system based on a new Lorenz-like attractor [J]. J4, 2011, 46(9): 5-8. |
[9] | LI Xiao-jun,BAI Jin-tao, LI Yong-an, . The midpoint diagram of trajectory in billiard systems [J]. J4, 2008, 43(9): 36-41 . |
[10] | LI Zhao-xia,ZHANG Qi-min . Existence and uniqueness of solutions to stochastic age-dependent population system with diffusion [J]. J4, 2007, 42(9): 107-113 . |
|