JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (12): 7-10.doi: 10.6040/j.issn.1671-9352.0.2021.246

Previous Articles    

Maximal idempotent-generated subsemigroups of the semigroup PCn

ZHANG Chuan-jun1, ZHAO Hai-qing2*   

  1. 1. School of Mathematics and Big Data, Guizhou Education University, Guiyang 550001, Guizhou, China;
    2. School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang 510006, Guangdong, China
  • Published:2021-11-25

Abstract: The authors studied the semigroup PCn, consisting of all partial decreasing and order-preserving transformations on a finite chain. Analyzing the idempotent elements, completely obtained the classification of the maximal subsemigroups as well as the maximal idempotent-generated subsemigroups of the semigroup PCn.

Key words: order-preserving, decreasing, maximal subsemigroup, maximal idempotent-generated subsemigroup

CLC Number: 

  • O152.7
[1] REILLY N R. Maximal inverse subsemigroups of Tx[J]. Semigroup Forum, 1977, 15(1):319-326.
[2] YANG Xiuliang. A classification of maximal inverse subsemigroups of finite symmetric inverse semigroups[J]. Communication in Algebra, 1999, 27(8):4089-4096.
[3] YOU Taijie. Maximal regular subsemigroups of certain semigroups of transformations[J]. Semigroup Forum, 2002, 64(3), 391-396.
[4] YANG Haobo, YANG Xiuliang. Maximal subsemigroups of finite transformation semigroups K(n,r)[J]. Acta Mathematica Sinica, 2004, 20(3):475-482.
[5] ZHAO Ping. A classification of maximal idempotent-generated subsemigroups of singular orientation preserving transformation semigroups[J]. Semigroup Forum, 2009, 79(2):377-384.
[6] DIMITROVA I, KOPPITZ J. On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations[J]. Semigroup Forum, 2011, 82(1):172-180.
[7] DIMITROVA I, FERNADES V H,KOPPITZ J. The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain[J]. Publicationes Mathematicae Debrecen, 2012, 81(1):11-30.
[8] ZHAO Ping, HU Huabi, YOU Taijie. A note on maximal regular subsemigroups of transformation semigroups[J]. Semigroup Forum, 2014, 88(2):324-334.
[9] HOWIE J M. Fundamentals of semigroup theory[M]. Oxford: The Clarendon Press, 1995: 1-349.
[10] 赵平,游泰杰,徐波.半群P C(n,r)的幂等元秩[J]. 吉林大学学报(理学版),2012, 50(1):44-48. ZHAO Ping, YOU Taijie, XU Bo. Idempotent rank of semigroup P C(n,r)[J]. Journal of Jilin University(Science Edition), 2012, 50(1):44-48.
[11] HIGGINS P M. Idempotent depth in semigroups of order-preserving mappings[J]. Proc Roy Soc Edinburgh Sec A, 1994, 124(5):1045-1058.
[1] YUAN Yue, ZHAO Ping. Maximal subsemigroups and the maximal regular subsemigroups of the semigroup H *(n,m)(r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 19-24.
[2] JIN Jiu-lin, TENG Wen, ZHU Fu-yang, YOU Tai-jie, QU Yun-yun. Maximal subsemigroups of the finite transformation semigroup of weak Y-stabilizer [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 55-62.
[3] LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11.
[4] LUO Yong-gui, XU Bo, YOU Tai-jie. On the rank and idempotent rank of each star ideal of the semigroup PHn [J]. J4, 2013, 48(2): 42-48.
[5] LUO Yong-gui. Non-group rank and relative rank of the semigroup W(n,r) [J]. J4, 2013, 48(12): 70-74.
[6] ZHAO Ping. On the idempotent ranks of the semigroup V(n,r) [J]. J4, 2012, 47(2): 78-81.
[7] GAO Rong-hai1,2, XU Bo1. On the rank of order-preserving and compressing singular
transformation semigroups
[J]. J4, 2011, 46(6): 4-7.
[8] ZHAO Ping1, YOU Tai-jie2, XU Bo2, HU Hua-bi1. Idempotent rank in decreasing and order-preserving finite partial transformation semigroups [J]. J4, 2011, 46(4): 75-77.
[9] ZHENG Yan,PANG Xin-qin . The fixed point of decreasing operators in Banach space [J]. J4, 2008, 43(6): 57-60 .
[10] CAO Yong . On the BQ property of linear ordered transformation semigroups [J]. J4, 2008, 43(2): 98-100 .
[11] XU Xiao-Xin, LIANG Yue-Liang, SANG Yan-Bin. The existence and uniqueness of a monotone decreasing positive solution of a third-order two-point boundary value problem [J]. J4, 2008, 43(12): 84-87.
[12] HAN Hong-xia . Relative ω-compactness in L-order-preserving operator spaces [J]. J4, 2007, 42(7): 91-94 .
[13] CHEN Bin . Cardinal functions in L-fuzzy order-preserving spaces [J]. J4, 2007, 42(12): 116-119 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!