JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (6): 64-73.doi: 10.6040/j.issn.1671-9352.0.2021.565

Previous Articles    

Simple 3-designs of PSL(2,2n)with block size 9

WEI Meng-meng1, LI Wei-xia1*, XING Jian-min2   

  1. 1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, Shandong, China;
    2. School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
  • Published:2022-06-10

Abstract: The number of the orbits of 9-subsets is determined by the action of PSL(2,2n)on 9-subsets of the projective line. Consequently, all simple 3-designs with block size 9 are obtained, under the action of PSL(2,2n).

Key words: 3-design, projective special linear group, automorphism group

CLC Number: 

  • O157.2
[1] BIGGS N L, WHITE A T. Permutation groups and combinatorial structures[M]. Cambridge: Cambridge University Press, 1979: 1-27.
[2] CUSACK C A, GRAHAM S W, KREHER D L. Large sets of 3-designs from PSL(2,q)with block sizes 4 and 5[J]. Journal of Combinatorial Designs, 1995, 3(2):147-160.
[3] OMIDI G R, POURNAKI M R, TAYFEH-REZAIE B. 3-designs with block size 6 from PSL(2,q)and their large sets[J]. Discrete Mathematics, 2007, 307(13):1580-1588.
[4] CAMERON P J, MAIMANI H R, OMIDI G R, et al. 3-designs from PSL(2,q)[J]. Discrete Mathematics, 2006, 306(23):3063-3073.
[5] KERANEN M S, KREHER D L, SHIUE P J S. The quadruple systems of the projective special linear group PSL(2,q)[J]. Journal of Combinatorial Designs, 2003, 11(5):339-351.
[6] KERANEN M S, KREHER D L. 3-designs from PSL(2,2n)with block sizes 4 and 5[J]. Journal of Combinatorial Designs, 2004, 12(2):103-111.
[7] LI Weixia, SHEN Hao. Simple 3-designs of PSL(2,2n)with block size 6[J]. Discrete Mathematics, 2008, 308(14):3061-3072.
[8] LI Weixia, SHEN Hao. Simple 3-designs of PSL(2,2n)with block size 7[J]. Journal of Combinatorial Designs, 2008, 16(1):1-17.
[9] GONG Luozhong, FAN Guobing. Simple 3-designs of PSL(2,2n)with block size 8[J]. Utilitas Mathematica, 2018, 106:3-9.
[10] DICKSON L E. Linear groups, with an introduction to the Galois field theory[M]. New York: Dover Publications, 1958: 260-287.
[11] TANG Jianxiong, LIU Weijun, WANG Jinhua. Groups PSL(n,q)and 3-(v,k,1)designs[J]. ARS Combinatoria, 2013, 110:217-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!