JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (12): 103-110.doi: 10.6040/j.issn.1671-9352.0.2021.784
SUO Meng-ge, CHEN Jing-rong*, ZHANG Juan-min
CLC Number:
[1] BRESAR B, KARDOS F, KATRENIC J, et al. Minimum k-path vertex cover[J]. Discrete Applied Mathematics, 2011, 159(12):1189-1195. [2] BRESAR B, KARDOS F, KATRENIS J, et al. On the vertex k-path cover[J]. Discrete Applied Mathematics, 2013, 161(13-14): 1943-1949. [3] NOVOTNY M. Design and analysis of a generalized canvas protocol[C] //Proceedings of the 4th IFIP WG 11.2 International Conference on Information Security Theory and Practices: Security and Privacy of Pervasive Systems and Smart Dervices, Berlin Heidelberg: Springer-Verlag, 2010: 106-121. [4] TU Jianhua, ZHOU Wenli. A factor 2 approximation algorithm for the vertex cover P3 problem[J]. Information Processing Letters, 2011, 111(14): 683-686. [5] TU Jianhua, YANG Fengmei. The vertex cover P3 problem in cubic graphs[J]. Information Processing Letters, 2013, 113: 481-485. [6] JAKOVAC M, TARANENKO A. On the k-path vertex cover of some graphs products[J]. Discrete Mathematics, 2013, 313: 94-100. [7] JAKOVAC M. The k-path vertex cover of rooted product graphs[J]. Discrete Applied Mathematics, 2015, 187: 111-119. [8] 张弼弢.一些乘积图k-路顶点覆盖[D].天津:天津师范大学,2016. ZHANG Bitao. The k-path vertex cover of some product graphs[D]. Tianjin: Tianjin Normal University, 2016. [9] LI Zhao, ZUO Liancui. The k-path vertex cover in Cartesian product graphs and complete bipartite graphs[J]. Applied Mathematics and Computation, 2018, 331: 69-79. [10] ROSENFELD V. The independence polynomial of rooted products of graphs[J]. Discrete Applied Mathematics, 2010,158:551-558. [11] YANNAKAKIS M. Node-deletion problem on bipartite graphs[J]. SIAM Journal on Computing, 1981, 10(2): 310-327. [12] BOLIAC R, CAMERON K, LOZIN V V. On computing the dissociation number and the induced matching number of bipartite graphs[J]. ARS Combinatoria, 2004, 72: 241-253. [13] ORLOVICH Y, DOLGUI A, FINKE G, et al. The complexity of dissociation set problems in graphs[J]. Discrete Applied Mathematics, 2011, 159(13): 1352-1366. [14] KARDOS F, KATRENIC J, SCHIERMEYER I. On computing the minimum 3-path vertex cover and dissociation number of graphs[J]. Theoretical Computer Science, 2011, 412(50):7009-7017. |
[1] | YANG Rui, LIU Cheng-li, WU Nan-nan. The number of perfect matchings and k-resonance in n-prism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 37-41. |
[2] | ZHANG Sheng-gui, CHEN Xiang-en. Vertex-distinguishing Ⅰ-total coloring and Ⅵ-total coloring of almost complete graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 23-25. |
[3] | . Vertex-distinguishing E-total coloring of complete bipartite graph K10,n with 10≤n≤90 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 23-30. |
[4] | LI Shi-ling, CHEN Xiang-en, WANG Zhi-wen. Vertex-Distinguishing E-Total coloring of complete bipartite graph K3,n with n≥18 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 68-71. |
[5] | LIU Xin-sheng, DENG Wei-dong, WANG Zhi-qiang. Several conclusions of adjacent vertex distinguishing E-total coloring of the cartesian product graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 5-8. |
[6] | LI Zhen-lin, LU Jun-long, L Xin-zhong. On signed edge total domination of graphs [J]. J4, 2012, 47(6): 83-86. |
[7] | YUAN Xiu-hua. The total signed domination number of complete graph [J]. J4, 2010, 45(8): 43-46. |
[8] | LIU Hai-Yang, MA Cheng-Gang, WANG Zhi-Beng. Graham's conjecture on the product of the thorn graph [J]. J4, 2009, 44(8): 25-30. |
[9] | YUAN Xiu-Hua. Signed edge total domination numbers of graphs [J]. J4, 2009, 44(8): 21-24. |
[10] | ZHANG Sumei, MA Qiaoling, ZHAO Haixia. (d,1)Total labeling of the product of path and cycle graph [J]. J4, 2009, 44(4): 37-42 . |
[11] | . Vertex distinguishing IEtotal chromatic numbers of complete bipartite graph K5,n [J]. J4, 2009, 44(2): 91-96. |
[12] | WANG Wen-li,LIU Xi-kui,ZHOU Wei . On the adjacent vertex-distinguishing incidence coloring of general Mycielski graphs [J]. J4, 2008, 43(10): 77-79 . |
|